

EECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE lome video movies

UUILD DIGI-COMPASS nterface an electronic ompass to your computer


## IRCUIT COOKBOOK

 low you can put CMOS ilateral switches to work
## ILL ABOUT RELAYS

 low to choose the right elay for your applicationTomputer itigest
jet 386 power on a $!86$ budget!

## 3UILD AN R-C DECADE BOX

Jow you can substitute resistance,
;apacitance and R-C networks!

\$2.25 U.S.
\$2.75 CAN


More professionals in more industries make Fluke their first choice in multimeters.
Fluke DMMs. Reliable. Accurate. Powerful. Tough. Versatile. Easy to use and simple to operate. Backed by the longest, most comprehensive warranty in the business. Made in the U.S.A. In short, Fluke makes meters you can bet your reputation on.
More choice. No matter what the job, there's a Fluke to handle it.
There's the new 80 Series-the most powerful, most complete test and measurement system available in a handheld package.

The popular 70 Series-simply put, the most requested DMM in the world, with nearly 2 million units in service since 1984. And the Fluke 21 and 23-70 Series simplicity in high-visibility yellow.
The Fluke 25 and 27-the most rugged meters ever built, totally sealed against water, dust and other contaminants.
And the precise 8060 Series - with the versatility of a test lab, the accuracy of a bench instrument, and the convenience of a handheld.
Smart choice. Compare Fluke DMMs with any other handheld. No one else gives you as much meter for your money. And no other meter costs less to own.

Your choice. For the name of your nearest Fluke distributor, call toll-free 1-800-44-FLUKE, ext. 33. And make a great choice.

John Fluke Mig. Co., Inc. P.O. Box C9090 M/S 250 C Everett, WA 98206. U.S: (206) 356-5400. Canada: (416) 890-7600. Other Countries: (206) 356-5500. 1989 John Fluke Mig. Co Inc. All rights reserved. Ad No. 0491-F70

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS

## November 1989 fllectronies

BUIMI THIS
33 VIDEO SCENE SWITCHERMake your home videos look like professional productions．William Sheets and Rudolf F．Graf
39 R－C．DECADE BOXFind the right substitute resistors and capacitors．Michael A．Lashansky
43 DIGI－COMPASSModern technology meets a tried－and－true navigational device．Thomas E．Black
TEAHINOTOY
52 HOW TO REPAIR CD PLAYERSThe basics of CD operation，and handy troubleshooting tips．Brian Phelps
COMPDHM年
83 THOROUGHLY MODERN MODEMS
How to pick the right modem for your needs．
TJ Byers
CIRCUHS
54 BILATERAL SWITCHESLearn how and when to use these electronic switches．Ray Marston
59 ALL ABOUT RELAYS
How you can put them to work for your applications．
Harry L．Trietley

## Dipaitumpits

## 6 VIDEO NEWS

What＇s new in this fast－ changing field． David Lachenbruch
24 EQUIPMENT REPORTS
ACE Communications AR2515
scanning receiver and AVCOM PSA－65A portable spectrum analyzer．
64 HARDWARE HACKER
More on cold fusion． Don Lancaster

## 74 AUDIO UPDATE

The sound of CD：Part I
Larry Klein

78 DRAWING BOARD
PC Photography Robert Grossblatt

83 EDITOR＇S WORKBENCH
Software and book reviews． Jeff Holtzman


PAGE 83


PAGE 39

## AND MOR：

106 Advertising and Sales Offices

106 Advertising Index
12 Ask R－E
107 Free Information Card
16 Letters
90 Market Center
26 New Products
4 What＇s New

## OJ Mil: COUP:



While video camcorders have surged in popularity over the last couple of years, home video movies have become a hard sell. Camcorders make it so easy to record events that most people end up shooting much more tape than anyone is willing to watch. Only careful editing can bring those boring videos to life.

Our Video Scene Switcher helps the editing process providing a wide variety of wipes and fades that gracefully hide the glitches that arise as you switch from one scene to another. To find out more about how you can make your home videos look like professional productions, turn to page 33 .

## COVING NTAP RONH:

## THE DECEMBER ISSUE GOES ON SALE NOVEMBER 2.

BUILD A PROGRAMMABLE PHASOR PROPERTY GUARD
This high-tech deterrent creates a field of high sound pressure acoustical ultrasonic energy that will send any burglar running!

BUILD A PC BOARD ETCHING SYSTEM
A must for making your own boards at home.
BUILD THE VIDEO SCENE SWITCHER: Part II
We finish up the circuit details and get on to construction.

## CIRCUIT COOKBOOK

We de-mystify phase-locked loop circuits with plenty of practical examples.

## WORKING WITH RELAYS

How to select solid-state relays and how to design your own.

[^0]Hugo Gernsback (1884-1967) founder M. Harvey Gernsback, editor-in-chief, emeritus

Larry Steckler, EHF, CET, editor-in-chief and publisher

EDITORIAL DEPARTMENT
Brian C. Fenton, editor
Marc Spiwak, associate editor
Daniel Goodman, technical editor
Teri Scaduto, assistant editor
Jeffrey K. Holtzman computer editor
Robert Grossblatt, circuits editor
Larry Klein, audio editor
David Lachenbruch contributing editor
Don Lancaster contributing editor
Richard D. Fitch contributing editor
Kathy Campbell, editorial assistant

## ART DEPARTMENT

Andre Duzant, art director
Injae Lee, illustrator
Russell C. Truelson, illustrator
PRODUCTION DEPARTMENT
Ruby M. Yee, production director
Robert A. W. Lowndes, editorial production
Karen S. Tucker advertising production
Marcella Amoroso productionassistant

CIRCULATION DEPARTMENT
Jacqueline P. Cheeseboro circulation director
Wendy Alanko circulation analyst
Theresa Lombardo circulation assistant
Michele Torrillo, reprint bookstore
Typography by Mates Graphics
Cover photo by Diversified Photo Services
Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.
Microfilm \& Microfiche editions are available. Contact circulation department for details.
Advertising Sales Offices listed on page 106.
of Circulation

# READY－TO－USE INSTRUMENTS FROM HEATH 

## Backed by the expertise that makes our instruments famous

－An engineering department that insists on honest value in every product．
－Rigorous quality assurance inspection．
－Full one year warranty．
－Outstanding manuals with complete specifications， operating instructions，schematics，and more．
－Technical assistance hotline：（616）982－3315．
－Our own factory service department．

## A POWER SUPPLY FOR EVERY WORKBENCH



Here＇s an excellent value in an all－around bench power supply．Dual meters let you continuously monitor voltage and current，and 0－30 volt 3 －amp output fills most common power supply needs．Use the constant current mode to charge rechargeable batteries，limit power to circuits under test，and operate devices that are current dependent．
SP－2762 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\＄169．95
Specifications：Output voltage： $0-30$ VDC continuously variable．Coarse and fine controls．Output load：0－3 A continugus．Output impodance：Typically loss than $0.2 \Omega$ to 10 kHz ．Ripple：To 10 kHz ， less than $5 \mathrm{mV} \mathrm{p}-\mathrm{p}(0.5 \mathrm{mV}$ rms typical）．Load rogulation： $\pm 0.25 \% \pm 3 \mathrm{mV}, 1-100 \%$ of ratedcurrent．Line regulation： $\pm 0.25 \% \pm 2 \mathrm{mV}$ for $\pm 10 \%$ line variation．Currentlimiting： $0-3 \mathrm{~A}$ ，variable．Power： 120 VAC 240 VAC， $\pm 10 \%, 50-60 \mathrm{~Hz}, 180$ watts．

HANDY BNC CABLE SET


Our new BNC cable set provides you with 10 handy coax cables for connections to instruments and other equipment．Included are two 3 ft ．BNC male／dual E－Z hook connectors，three $1-1 / 2 \mathrm{ft}$ ．BNC male／ BNC male connectors，two 2 ft ．BNC male／BNC male connectors， and a rack that you can mount on your workshop wall for convenient cable storage．An outstanding value at less than $\$ 3.00$ a cable． HCA－5002
\＄29．95

## PREMIUM QUALITY COAX CONNECTORS



Make different types of coaxial connector adapters with gold plated pins and Teflon insulation．Just screw the required connector onto one of the interfaces－no crimping or soldering is needed．In just seconds，you＇ll have that special coaxial connection you require．Kit contains male and female N，F，RCA，BNC，UHF，SMA，TNC，and mini UHF connectors．A handsome，padded，zippered case is in－ cluded with your deluxe kit to protect your connectors and to keep them looking new after years of service．
HCA－3001
$\$ 79.95$

## DELUXE SCOPES ARE A PLEASURE TO USE



These oscilloscopes offer the measurement capability you need，plus luxury features that make them a joy to own．TV triggers， $1 \mathrm{mV} /$ div sensitivity，differential and X－Y measurements，plus beam finder， component tester，graticule illumination，and other features many manufacturers omit．Enjoy a top－quality 25 or 40 MHz scope backed by a reliable name，full warranty，and complete specifications．
25 MHz：SO－4552 ．．．．．．．．．．．．．．．．．．．．．．．．．\＄399．95 $40 \mathrm{MHz}:$ SO－4554 ．．．．．．．．．．．．．．．．．．．．．．．．$\$ 599.95$ Spocifications：Vertical： $1 \mathrm{mV} /$ div－ $5 \mathrm{~V} / \mathrm{div}$ ．Bandwidth loss at $1 \mathrm{mV} /$ div．Accuracy $\pm 3 \%$ at $1 \mathrm{kHz}, \pm 5 \%$ at $1 \mathrm{mV} /$ div．Over ahoot：loss than $5 \%$ ．Max input： 400 V ．Modes：CHA，CHB，dual，add．Horizontal： .2 s－． $1 \mu$／div，plus X10 magnifier．Trigeer：CHA，CHB，Line，Ext，Auto，Norm，TV－V，TV－H，＋／－． Power： $90-132 / 198-264$ VAC， $50 / 60 \mathrm{~Hz}, 45 \mathrm{~W}$ ．Weight： 16.7 lbs ．

## HALF PRICE SPECIAL！



ONLY
\＄12．47

Order any product from this ad and get our popular shirt pocket miniature DMM，Model SM－2300－A，for only $\$ 12.47$－half our regular price．
Specificatione：Autoranging 3－1／2 dight DMM．$D C$ wolts： 2000 mV to $450 \mathrm{~V}, \pm 1.3 \% \pm 4$ counts．Approx． 11 M』 input resistance．Max input， 450 VDC．AC vots： 2000 mV to $450 \mathrm{~V}, \pm 2.3 \% \pm 8$ counts， 50 to 400 Hz ．Approx． $11 \mathrm{M} \Omega$ input resistance．Max input， 450 V．Resistanco： $2000 \Omega$ to $2 \mathrm{M} \Omega \pm 2 \% \pm 4$ counts．

To order，call TOLL FREE 1－800－253－0570
Use order code 217－320


We guarantee every specification we publish on every product we sell．

# What's News 

## Analytical software

Analytical software that eliminates much of the time- and money-consuming guesswork in designing molds for forming plastic parts is reported by engineers at the GE Research and Development Center at Schenectady, NY. The advanced software packages are used in developing parts made by blow-molding and thermoforming. Containers for milk, soda, and other liquids are among the familiar products made by blow-molding. Liners for refrigerators and instrument panels for cars are among the products made by thermoforming.

The new software was designed primarily for predicting wall thickness. "The plastic gets very thin where it has to stretch a lot, and there was no way of predicting just how thin it would get," says one of the engineers. "You'd have to make a mold and produce a part to find out."

The analysis is made after a designer has generated a computer model of a proposed mold. The user inputs data that describes the elevated-temperature "stress vs strain" behavior of the plastic

ge engineers, Dr. Horst G. DeLorenzi and Dr. Herman F. Nied examine test parts made with the help of the new advanced software that makes it possible to simulate the molding of a plastic component, using a mold that exists only in the computer's "mind." The computer simulation of the part (shown on the screen in the background) shows variations in its wall thickness, and points up any too-thin parts.
being used, and the computer performs its "thinning" analysis. Special algorithms had to be developed to solve the equations used.

## DAT update

Last month we reported that digital audio tape ( $D A T$ ) decks were likely to hit the consumer market in the near future, after gaining recording-industry approval thanks to the addition of a built-in copy-protection device called Solocopy. A few days after that issue went to press, two separate DAT announcements proved us right-and wrong.

On July 28th, the Electronic Industries Association's Consumer Electronics Group (EIA/ $C E G$ ) said that they would join the Recording Industry Association of

America ( RIAA ) in suporting legislation for a new consumer DAT recorder system that allows copying, but limits subsequent reproduction of those copies. That same day, in London, leaders of the international recording and con-sumer-electronics industries announced a joint recommendation to governments calling for the implemention of that system-not Solocopy, but the Serial Copy Management System, or SCMS.

As its name implies, the system is a method for controlling "serial" digital copying, which high-speed pirating operations would use. Es-
sentially, SMCS will allow any original prerecorded work to be copied indefinitely onto different blank DAT cassettes, but limits the number of digital-to-digital copies that can be made from the firstgeneration copies. The circuitry that controls the DAT deck's functions will be programmed to determine whether the music to be recorded is entering via the recorder's digital or analog inputs and to read certain codes contained in the material's subcodes.

All digital recordings and broadcasts have digital subcode channels that contain their "category codes" as well as a "copyright flag." The DAT machine uses a combination of the two to tell if copying is permitted. If the source and material are identified as being protected, an "identification code" of " 1,0 " is written onto the copy as it is being recorded; the " 1,0 " code prevents direct digital copying from that copy. If the source is identified and the material is not copy-protected, a " 0,0 " code will be assigned and future copying will not be limited. Because the technology does not exist at this time for the DAT deck to determine if music entering through the analog inputs is copyprotected, any material recorded via the analog inputs would generate a " 1,1 " code that would indicate that only one additional digital copy could be made from the firstgeneration copy.

Besides the EIA-RIAA support, SMCS is expected meet the approval of important consumer and retailer groups, including the Home Recording Rights Coalition, the Consumers Union, and the National Association of Retail Dealers of America (NARDA). The international group was made up of leading Japanese and European electronics manufacturers the RIAA, and the International Federation of the Phonographic Industry (IFPI).

# WITH CIE, THE WORLD OF ELECTRONICS CAN BE YOUR WORLD, TOO. 



Look at the world as it was 20 years ago and as it is today. Now, try to name another field that's grown faster in those 20 years than electronics. Everywhere you look, you'll find electronics in action. In industry, aerospace, business, medicine, science, government, communicationsyou name it. And as high technology grows, electronics will grow. Which means few other fields, if any, offer more career opportunities, more job security, more room for advancement-if you have the right skills.

## SPECIALISTS NEED SPECIALIZED TRAINING.

It stands to reason that you learn anything best from $\alpha$ specialist, and CIE is the largest independent home study school specializing exclusively in electronics, with a record that speaks for itself. According to a recent survey, $92 \%$ of CIE graduates are employed in electronics or a closely related field. When you're investing your time and money, you deserve results like that.

## INDEPENDENT STUDY BACKED BY PERSONAL ATTENTION.

We believe in independent study because it puts you in a classroom of one. So you can study where and when you want. At your pace, no somebody else's. And with over 50 years of experience, we've developed proven programs to give you the support
such study demands. Programs that give you the theory you need backed with practical experience using some of the most sophisticated electronics tools available anywhere, including our Microprocessor Training Laboratory with 4 K of random access memory. Of course, if you ever have a question or problem, our instructors are only a phone call away.


## START WHERE YOU WANT, GO AS FAR AS YOU WANT.

CIE's broad range of entry, intermediate, and advanced level courses in a variety of career areas gives you many options. Start with the Career Course that best suits your talents and interests and go as far as you want-all the way, if you wish, to your Associate in Applied Science Degree in Electronics Engineering Technology. But wherever you start, the time to start is now. Simply use the coupon below to send for your FREE CIE catalog and complete package of career information. Or phone us, toll-free, at 1-800-321-2155 (in Ohio, 1-800-523-9109). Don't wait, ask for your free catalog now. After all, there's a whole world of electronics out there waiting for you.


Cleveland Institute of Electronics, Inc.
1776 East 17th Street. Cleveland, Ohio 44114
Member NHSC
Accredited Member National Home Study Council

YES... I want to learn from the specialists in electronics-CIE. Please send me my FREE CIE school catalog, including details about CIE's Associate Degree program, plus my FREE package of home study information.
Name (print):
Address:
City:
Age:
Check box for G.I. Bill bulletin on educational benefits:
$\square$ Veteran $\square$ Active Duty

# VIDEO News 

DAVID TLACHENBRUCH, CONTRIBUTING EDITOR

- Ghostbuster. Fifty years after the start of regular electronic television transmission, broadcasters and TV-set manufacturers are about to tackle the single most troublesome reception problem-multipath, or "ghosts." The National Association of Broadcasters (NAB) has proposed to the Advanced Television System Committee (ATSC) a crash program to develop a ghostelimination system, an idea that has been enthusiastically seconded by the televisionreceiver industry. Most of the proposed highdefinition TV systems included ghost cancellation, accomplished by various means. The first anti-ghosting system to go into effect is being implemented this fall in Japan with Clearvision extended-definition TV (EDTV) broadcasts, but there is no reason why antighosting can't be accomplished on the standard NTSC signal without EDTV or HDTV.

The Japanese system uses an invisible "training pulse" that is broadcast in the vertical blanking interval. It is very inexpensive for broadcasters to implement, although there are other anti-ghosting systems that act alone in the receiver without a broadcast pilot signal. The ATSC will examine all the proposed systems with a view to starting tests as soon as possible-and perhaps instituting an anti-ghosting program within the year. Although the system obviously would aid broadcasters, the cable system isn't immune to ghosts either. Many cable systems have difficulty in picking up clear signals off the air. In addition, there's the problem of ghosts generated internally within cable systems-not to mention direct-pickup ghosts in cities, where the signal reaches the antenna terminals directly from the station as well as from the cable system. Whatever, the ghostbuster will be welcome

- IDTV problems. While the NAB loves the ghostbuster, it's not so sure it likes improveddefinition TV (IDTV) sets. The latest hot products on the TV market, those sets convert interlaced scan to progressive scan, in effect doubling the number of lines in the picture. It's very obvious
that when the two fields are displayed at the same time as they are in IDTV-there could be some problems. TV stations transmit odd lines ( $1,3,5$, and so forth) and then go back to the even lines (2, 4, 6, etc.). Progressive-scan IDTV sets rearrange the order of that presentation, deriving additional lines and presenting the lines in numerical sequence. They all use various means of compensating for motion that results from rearranging the timing of the picture elements. Because of the rearrangement of lines, the NAB complains that in some cases IDTV sets might cause distortion-particularly in cases where graphics are superimposed on the picture or in cases of rapid motion, as in ice hockey. In other cases, IDTV might present too good a picture; its redundant lines appear to show up poor-quality broadcast equipment. Set makers insist that there's nothing wrong with their IDTV sets-but the broadcasters want to talk it over.
- Dwindling monochrome. Black-and-white television is nearing the end of the line. In the first five months of 1989 , sales were down $38.1 \%$ from the same period in 1988. For January through May, sales to dealers totaled only 619,000 sets, according to the ELA. That's below the total for any good single sales month in the 1960's. Dealers are quick to say that the slump isn't due to any lack of customers but to the shortage of sets. With color prices declining and monochrome prices rising due to the scarcity of picture tubes, the black-and-white TV set now certainly appears to be a vanishing breed.
- 2-headed VCR. Go-Video, the Arizona company that filed suit against most Japanese VCR manufacturers, says it will market a doubledeck VCR by Christmas. (The lawsuits charged that the VCR manufacturers were refusing to sell finished products or parts for the dual decks.) The double-deck unit, made for Go-Video by Korea's Samsung, will list at $\$ 995$ and contain two VHS decks for dubbing and editing. The deck will have special circuitry to prevent the copying of Macrovision-encoded cassettes.

R-E


# No matter where you go, Tek's new 222 is a perfect fit. 

Introducing Tek's new 222 Digital Oscilloscope. Weighing in at under 4.5 pounds, the new Tek 222 is an ultra-portable, $10-\mathrm{MHz}$ digital storage scope that's perfect for service applications. So tough, rugged, and totally self-contained, it can go just about anywhere. And it's incredibly easy to use-even in extreme conditions.

Extraordinary capability and reliability at a great price. The $२ २ 2$ is a dual-channel scope that can measure a wide variety of electronic instrumentation and circuitry. It has rechargeable onboard batteries with a floating ground to 400 volts, and meets tough environmental standards.

Plus, the 222 lets you pre-define front-panel setups, and call them up with a single button in the field. You can also save waveforms in the scope's memory, then transfer them to a PC for analysis and hard-copy output when you get back to the shop.

Best of all, the $२ 22$ is yours for only $\$ 2350$. And that includes Tek's remarkable three-year warranty on parts, labor, and CRT.

Get one to go! Pack a handful of power with you wherever you go. To order your २२2, or for a free brochure, contact your local Tek representative or authorized distributor. In a hurry? Call 1-800-426-2200.

# Learn to troubleshoot and service today's computer systems as you build a fully XT-compatible micro, complete with 640K RAM and 

 powerful 20 meg hard drive
## Train the NRI Way - and Earn Good Money Servicing Any Brand of Computer

Jobs for computer service technicians will almost double in the next 10 years according to Department of Labor statistics, making computer service one of the top 10 growth fields in the nation.

Now you can cash in on this exciting opportunityeither as a full-time industry technician or in a computer service business of your own-once you've mastered electronics and computers the NRI way.

NRI's practical combination of "reason-why" theory and hands-on building skills starts you with the fundamentals of electronics, then guides you through more sophisticated circuitry all the way up to the latest advances in computer technology.

Train With a Powerful XT-Compatible Now With 20 Meg Hard Drive and 640 K RAM!

To give you hands-on training with the absolute in state-of-the-art computer technology, NRI includes the powerful new Packard Bell VX88 computer as the centerpiece of your training. As you assemble this fully IBM XTcompatible micro from the keyboard up, you actually see for yourself how every section of your computer works.


Your NRI computer training includes all this: • NRI's unique Discovery Lab ${ }^{\circledR}$ for circuit design and diagnosis - NRI's hand-held digital multimeter featuring "talk-you-through" instructions on audio cassette $\bullet$ A digital logic probe that lets you visually examine computer circuits - The new Packard Bell VX88 computer with "intelligent" keyboard, 360 K double-sided, doubledensity disk drive, 640 K RAM, 16 K ROM - 20 megabyte hard disk drive $\cdot$ Bundled software including MS-DOS, GW-BASIC, word processing, spreadsheet, and database programs • Packard Bell reference

world experience you need to work-
with, troubleshoot, and service today's most widely used computer systems.

## New! Explore the Latest Advances in Voice Synthesis

Now NRI also includes innovative hands-on training in voice synthesis, one of today's most exciting and widely applied new developments in computer technology.

You now train with and keep a full-featured 8 -bit D/A converter that attaches in-line with your computer's parallel printer port. Working with the exclusive text-to-speech software also included with your course, you explore the fascinating technology behind both digitized and synthesized computer speech.

NRI's new hands-on training in voice synthesis is just one more way you get the confidence-building experience you need to feel at home with the latest advances in computer technology.

## FREE 100-Page Catalog Tells More

Send today for NRI's big, 100-page catalog that describes every aspect of NRI's innovative computer training, as well as hands-on training in other growing high-tech career fields. If the coupon is missing, write to: NRI School of Electronics, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.


McGraw-Hill Continuing Education Center 4401 Connecticut Avenue, NW Washington, DC 20008

IBM is a registered
trademark of
trademark of
International Business
Machines Corporation

## No Experience Needed, NRI Builds It In

This is the kind of practical, hands-on experience that makes you uniquely

## SEND TODAY FOR FREE CATALOG!

## R/EZ <br> For Career courses <br> McGraw-Hill Continuing Education Center 4401 Connecticut Avenue, NW, Washington, DC 20008 $\square$ check for details.

- CHECK ONE FREE CATALOG ONL Computer Electronics $\square$ TV/Video/Audio Servicing $\square$ Robotics
$\square$ Electronic Music Technology $\square$ Security Electronics $\square$ Digital Electronics Servicing
$\square$ Telecommunications $\square$ Industrial Electronics $\square$ Electronic Circuit Design $\square$ Basic Electronics
$\square$ Bookkeeping \& Accounting
$\square$ Building Construction
$\square$ Automotive Servicing




## Ask R-E

## FLASH POWER

I spend a good deal of my work time in front of a computer terminal and, because of the way my office is laid out, I can't see the front door while I'm working. Since I'm deaf, I have no way of knowing when someone is knocking on the door or has entered my office. I'd like to rig up a strobe light that will flash to alert me to the visitor. I've purchased a Xenon Flash Tube, but I don't have any idea how to power it. Can you provide me with a circuit to power and trigger a strobe from a $120-\mathrm{VAC}$ source?-S Anthony, Tulsa, Oklahoma

Although there are several ways to trigger a flash tube, all involve generating high voltages. Commercial flash units either step up the AC line voltage to whatever voltage the tube needs or use a switching supply to get the required AC voltage from a lowpowered DC supply. The latter is the basis of most of the batterypowered flash units used in photography.

While it's certainly possible to build a circuit to drive the tube, it's not really worth it since commercial photographic flash units are available for less than the total price of the parts needed to build one. If you're really into building your own stuff, you can use the circuit shown in Fig. 1 as a starting point. The $200-300$ VAC can be gotten from a standard step-up transformer. If you can't find one of them, you can try a transformeryou use 120 -VAC appliances in countries that have 220 VAC.

Make sure you get a converter that's built around a transformer and not one that uses diodes. Just use it backwards as a step-up transformer.


FIG. 1
If you do build your own circuit to power the tube, be very careful putting it together. Not only are you playing around with the line voltage but you're also stepping it up to over 200 VAC . Make sure everything is properly insulated, and be sure to put a fuse on the line.

While you're free to get the job done any way you want, remember that the original idea was to let you know when someone is entering the room, not learning to build a power supply for the strobe. It's a lot easier to get the

WRITE TO:

## ASK R-E

Radio-Electronics
$500-\mathrm{B} \mathrm{Bi}-\mathrm{County}$ Blvd.
Farmingdale, NY 11735


DELUXE TEST LEAD KIT
Users call TPI test leads The Absolute Best. The TLS2000 features the highest quality cable in the industry - with spring-loaded safety-sleeved plugs. U.L. listed (file E79581). Kit: \$29. Leads \& probes only: $\$ 19$. Satisfaction guaranteed. TEST PROBES INC. Call toll-free for catalog: 1-800-368-5719.
CIRCLE 251 ON FREE INFORMATION CARD


## BNC ATTENUATOR KIT

Contains 4 attenuators - $3 \mathrm{~dB}, 6 \mathrm{~dB}, 10 \mathrm{~dB}$, $20 \mathrm{~dB} ; 1$ feedthrough and 1 termination. Thickfilm circuitry for low reactances. Rugged design resists shock and lasts longer. Rectangular shape stays put on the bench. Impedance: $50 \Omega$ Frequency: 1 GHz . Maximum Power: 1 kW peak, IW avg. VSWR 1.2:1. Attenuator Accuracy $: \pm 0.2 \mathrm{~dB}$. Terminations Resistance Tolerance: $\pm 1 \%$. $\$ 150$.
TEST PROBES INC. Call toll-free for catalog: 1-800-368-5719.
CIRCLE 252 ON FREE INFORMATION CARD


## ECONOMICAL SILICON <br> RUBBER TEST LEADS

Best value in moderately priced leads. High quality, soft, silicon rubber cable. Banana plug on measuring tip accepts push-on accessories. Plugs have spring-loaded safety sleeves. Model TL1000 \$14. Satisfaction guaranteed. TEST PROBES INC. Call toll-free for catalog: 1-800-368-5719.


## COAX ADAPTER KIT

- Create any adapter in seconds
- Make all combinations of BNC, TNC, SMA, N, UHF, Mini-UHF, F and RCA
The TPI 3000A kit contains male and female connectors of all 8 types, and 6 universal interfaces. Simply screw any combination of 24 connectors to one of the interfaces to create the desired adapter. $\$ 150$.
TEST PROBES INC. 9178 Brown Deer, San Diego, California 92121 . Call toll-free for catalog: 1-800-368-5719.


## No Better Probe Ever at This Price!



Shown here
Model SP150
Switchable 1x-10x .... 4

## Risetime less than 1.5 nsec .

- Universal - works with all oscilloscopes
- Removable Ground Lead
- Excludes External Interference - even on scope's most sensitive range
- Rugged - withstands harsh environments including high temperature and humidity
- Advanced Strain Relief cables last longer
- Available in $10 \mathrm{x}, 1 \mathrm{x}$ and switchable 1x-10x

Call for free catalog and Distributor in your area
pump, so the only piece you're missing is a circuit to trigger the system. What you're looking for is a liquid-level detector that meets the requirements of low voltage and minimal current draw.

Figure 2 contains two simple detector circuits that should work perfectly for you. Believe it or not, the most critical part of the whole thing are the probes. Since you're burying them down
in the septic tank, you should choose a metal that won't be affected by any of the corrosive liquids found there. The cheapest alternative is to make the probes from stainless steel, but any other conductive material that isn't affected by corrosive liquids can be used.

Try to locate the detector circuit fairly close to the septic tank to keep the probe length as short as possible. You can put the cir-


## You Have Counted on Us for 15 Years

You have counted on OPTOELECTRONICS Hand Held Frequency Counters to be the best quality, to be affordable and reliable. We have been there for you with Frequency Counters that are compact and ultra sensitive.

And more and more of you are counting on us, technicians, engineers, law enforcement officers, private investigators, two-way radio operators, scanner hobbyists, and amateur radio operators, just to name a few.

| Hand Held Series Frequency Counters and Instruments |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MODEL | 2210 | 1300H/A | 2400 H | CCA | CCB |
| RANGE: FROM | $\begin{aligned} & 10 \mathrm{~Hz} \\ & 2.2 \mathrm{GHz} \end{aligned}$ | $\begin{aligned} & 1 \mathrm{MHz} \\ & 1.3 \mathrm{GHz} \end{aligned}$ | $\begin{aligned} & 10 \mathrm{MHz} \\ & 2.4 \mathrm{GHz} \end{aligned}$ | $\begin{aligned} & 10 \mathrm{MHz} \\ & 550 \mathrm{MHz} \end{aligned}$ | $\begin{aligned} & 10 \mathrm{MHz} \\ & 1.8 \mathrm{GHz} \end{aligned}$ |
| APPLICATIONS | General Purpose Audio-Microwave | RF | Microwave | Security | Security |
| PRICE | \$219 | \$169 | \$189 | \$299 | \$99 |
| $\begin{aligned} & \text { SENSITIVITY } \\ & 1 \mathrm{KHz} \\ & 100 \mathrm{MHz} \\ & 450 \mathrm{MHz} \\ & 850 \mathrm{MHz} \\ & 1.3 \mathrm{GHz} \\ & 2.2 \mathrm{GHz} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \mathrm{NA} \\ & <1 \mathrm{mv} \\ & <5 \mathrm{mv} \\ & <20 \mathrm{mv} \\ & <100 \mathrm{mv} \\ & \mathrm{NA} \end{aligned}$ | $\begin{aligned} & \mathrm{NA} \\ & <3 \mathrm{mv} \\ & <3 \mathrm{mv} \\ & <5 \mathrm{mv} \\ & <73 \mathrm{mv} \\ & < \end{aligned}$ | $\begin{aligned} & \text { NA } \\ & <.5 \mathrm{mv} \\ & <1 \mathrm{mv} \\ & \text { NA } \\ & \text { NA } \\ & \text { NA } \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{NA} \\ & <5 \mathrm{mv} \\ & <5 \mathrm{mv} \\ & <5 \mathrm{mv} \\ & <10 \mathrm{mv} \\ & <30 \mathrm{mv} \end{aligned}$ |
| ACCURACY AL | E +1-1 PPM | O TIME B |  |  |  |

All counters have 8 digit red $28^{\prime \prime}$ LED displays. Aluminum cabinet is $3.9^{\prime \prime} \mathrm{H} \times 3.5^{n} \times 1^{\text {n }}$. Internal Ni -Cad batteries provide 2.5 hour portable operation with continuous operation from AC line charger/power supply supplied. Model CCB uses a 9 volt alkaline battery. One year parts and labor guarantee. A full line of probes, antennas, and accessories is available. Orders to U.S. and Canada add $5 \%$ to total ( $\$ 2 \mathrm{~min}$, $\$ 10 \mathrm{max}$ ). Florida residents, add $6 \%$ sales tax. COD fee $\$ 3$. Foreign orders add $15 \%$. MasterCard and VISA accepted.
Orders to U.S. and Canada add $5 \%$ to total ( $\$ 2 \mathrm{~min}, \$ 10 \mathrm{max}$ ). Florida residents, add $6 \%$ sales tax. COD fee $\$ 3$. Foreign orders add 15\%. MasterCard and VISA accepted.

## OPTOELECTRONICS ING.

5821 N.E. 14th Avenue • Fort Lauderdale, Florida 33334
1-800-327-5912 FL (305) 771-2050 FAX (305) 771-2052
cuit in a weatherproof enclosure, along with a transformer and rectifier, and bury it in the ground next to the power leads for the pump itself. The transformerrectifier circuit can tap power from those leads, so that you can power the circuit locally.
The circuits will drive SCR's or relays. And while I do understand your concern about explosive gas, the circuitry doesn't have to be in the tank itself, so there's no reason why you can't use relays. Whatever you use to control the motor, make sure that it can handle the amount of power needed by the pump. R-E

## RE-WIRING

I've recently bought a house in the country, and I plan on rewiring it because the original wire is quite old. Since the wiring is buried in the walls, I need some way of locating them. I'd like to be able to do that without knocking lots of holes in the walls. Is there some easy, inexpensive, way to do that?-B. MacDonnell, New York, NY
If you hunt through lots of magazines and catalogs, you'll probably find some expensive piece of equipment that can locate wires buried in the walls. But there's another way to do the job that's just as accurate, costs nothing, and uses equipment that you probably have around the house anyway.
All you need to find the wires is an old, noisy, electric appliance and a small transistor radio. The appliance can be any motor-driven device such as a hair dryer, drill, food processor, and so on. The only requirement is that it have a motor with brushes, and the more it arcs and spits, the better it is.
The reason you want a noisy motor is that it generates interference that can be picked up on a portable radio (or any other radio or TV for that matter). Turn on the appliance and run the radio across the area of the wall where you expect to find wiring. The louder the noise from the radio, the closer you are to the wires.

Don't be under the impression that this is just a juryrigged way to get the job done. Most of the dedicated equipment that's designed to find buried wiring works on exactly the same principle.

R-E

## (4) Your Source for time- and money-saving ideas, practical projects and expert guidance.

An absolutely no-risk guarantee.


## LETTERS



## NUCLEAR-WASTE MANAGEMENT

I have been working in the electronics field for over 50 years, and have been a reader and subscriber of Radio-Electronics for many years. I've never written to any publication before, but now I feel compelled to do so.

In the August 1989 issue, Don Lancaster seems to have been carried away by the more radical ecology nuts. His diatribe against nuclear power is a very shortsighted condemnation of one of the cleanest sources of power available today. His idea for a waste-disposal site is too facetious. Some people feel that solar power would be a better source of power, but he condemns that out of hand.

I feel that what is needed to make nuclear power really practical is very careful monitoring of all plant construction-no short cuts to save money. Then, for waste storage, the federal government could locate an isolated bowl in the western mountains and maintain well-supervised facilities. One day, some bright scientist will figure out a way to make good use of the waste. Then, all too soon, there will be a shortage of such material! It has happened before. Consider what happened to the left-over sludge from early oil refineries: Someone processed it and got paraffin. Today, very little waste is left to throw away. That is the way to go-instead of condemning things out of hand, think constructively!

## EWALD HANSEN

White Plains, NY
Perhaps you're correct. But when we consider that the waste
generated would have to be supervised for a period of time that will be much longer than any government has held power-indeed, longer than recorded history-we shudder.-Editor

## SELLING SOLAR POWER SHORT

I found Don Lancaster's "Hardware Hacker" column concerning cold fusion (Radio-Electronics, August 1989) to be interesting, but I take exception to his view on solar cells.

His analysis of the hidden costs is wrong, since he is basing it on the premise that it would be too costly for a utility or a small power supplier. Photovoltaics are applicable to homeowners, not utilities, so costs for real estate and major support structures do not enter into the picture. (And the financing is considerably lower for those free cells he mentioned.)

The efficiency of modern cells is more like $14 \%$, with stacked cells yielding $28-30 \%$. I understand that there is a photovoltaic that uses a unique approach that can obtain efficiencies between $40-60 \%$
P.S. Do you need my full address for my truckload of "free" solar cells?
JOE ZUIS
Brockton, MA

## HDTV: A PESSIMIST VIEWPOINT

I have been very interested in your recent articles (Radio-Electronics, January and February 1989) concerning High Definition and Improved Definition TV (HDTV and IDTV).

I recently retired after a lifetime spent as a professional engineer in electronics, mostly military and space related. My interest in TV
goes back to 1945, when I designed and built my own 10 -inch receiver. I also designed and built my own color receiver in 1954. I am probably more aware than most people of the shortcomings of the NTSC system. I am also aware of what a wonderful achievement it was, more than 35 years ago, to come up with something that good.

As far as HDTV is concerned, unfortunately, I have a pessimistic viewpoint, which is not helped by the many competing systems. I am completely able to accept that excellent HDTV systems can be designed and built. I can even believe that it will be possible to agree upon one system, as was done with NTSC. I do not believe, however, that it can be sold to a mass market.
If one goes into any appliance store that has operating TV sets on display, one is amazed by the dreadful quality of the pictures on many of those receivers. That is usually the result of incompetent adjustment by the sales personnel, and is often made worse by poor incoming signals. Since the appliance store is in business to sell TV sets, one must conclude that the poor picture quality does not bother prospective customers. (If it did, the store would take steps to improve it, to avoid loss of sales.)

One can observe the same thing in many people's homes. The picture will often have grossly wrong color, or other major defects, which could be greatly improved by simple adjustment. However, most people do not notice, or care about, the poor picture quality.
A minority of people, myself in-

## 1．End Blown Fuses．

The new 200 Series multimeter is protected from excess voltage or surges with a self－resetting fuse．
2．Keep Your Eyes On Your Work． Quickly probe a circuit board listening for audible tone changes that pinpoint the problem without glancing at the LCD．

## 3．Detect Intermittents．

Hear a distinctive crackling sound when an intermittent occurs．

## 4．Find Dead Capacitors．

 Capacitor voltage build－up orbleed－off is heard loud and clear with the 200 Series＇Audible Readout．
5．Find Logic Stuck－Ats．
Using standard leads，a fast Logic
Pulse Detector lets you easily detect pulses down to 50ns．

## 6．Adjust Voltage Levels．

When adjusting audio or video response，an audible tone that changes pitch as measured signals increase or decrease permits faster and easier adjustments．
7．Stop Third Hand Problem．
Tilt stand and Skyhook，auto－ranging，
and Audible Readout allow you to spend less time fiddling with your meter．

| FEATURES | 222 | 223 |
| :--- | :---: | :---: |
|  |  | $\bullet$ |
| Audible Readout |  | $\bullet$ |
| Logic Pulse Detector |  | $\bullet$ |
| Fast Auto－Ranging | $\bullet$ | $\bullet$ |
| Self－Resetting Fuse | $\bullet$ | $\bullet$ |
| Auto－off Battery Saver | $\bullet$ | $\bullet$ |
| DC Voltage Accuracy | $0.5 \%$ | $0.25 \%$ |
| Warranty | 2 years | 2 years |
| Price | $\$ 129.00$ | $\$ 149.00$ |

The 200 Series．Multimeters that take the work out of work．Call or write for complete information． 1－800－227－9781 Inside California． 1－800－854－2708 Outside California．

## Beckman Industrial ${ }^{\text {m }}$

An Affiliate of Emerson Electric Co．

## ACE TROUE

Find trouble fast with the new $100 \mathbf{M H z}$
2247A from Tek. The new 4-channel 2247A packs more troubleshooting power for the money than any scope you can buy.

An integrated counter/timer and voltmeter let the 2247A perform more than a dozen voltage and time measurements automatically. And provide the crystalcontrolled accuracy you need to debug digital systems in applications such as logic design, communications,

manufacturing, and field service.
But that's just a hint of the time-saving automation built into the 2247A.


You also get Auto Setup,
for one-button signal acquisition. The ability to store up to 20 front-panel setups, and recall them instantly. On-screen display of automatic time and voltage readings. Plus our unique SmartCursors,'™ which give you virtually hands-off measurement of + peak, - peak, peak-to-peak, dc and gated volts.

This is the most extensive set of capabilities ever assembled in a low-cost portable scope-the 2247A is only $\mathbf{\$ 2 9 9 5}$ ! And it's backed by Tek's standard 3-year warranty on all parts and labor.

So if you want to find trouble fast, there's one sure way to do it. Look into the new 100 MHz 2247A from Tek.

| Model Number | 2247A | 2246A |
| :--- | :---: | :---: |
| Bandwidth | 100 MHz | 100 MHz |
| No. of channels | 4 | 4 |
| Dual Time Base | Yes | Yes |
| Trigger Level Readout | Yes | Yes |
| Auto Setup | Yes | Yes |
| Store/Recall | Yes | Yes |
| SmartCursors | Yes | Yes |
| Time/Noltage Cursors | Yes | Yes |
| Voltmeter | Yes | Yes |
| Counter/Timer | Yes | No |
| Price* | $\$ 2995$ | $\$ 2595$ |

[^1]
# ESHOOTER 



## Two more ways to find trouble.

Tek's 2246A and 2245A offer many of the performance features you'll find in the 2247A, at even lower prices.

Both are 100 MHz , 4-channel scopes with Auto Setup, time and voltage cursors, CRT readouts, dual time bases and versatile triggering. They're lightweight, rugged, and built to tough environmental standards for temperature, shake, shock and humidity.

Plus, they each have the easy-to-use front panel that's made Tek's 2200 Series the world's bestselling oscilloscopes.

And beyond the features, both have one more important thing in common with the

| 2245A |
| :---: |
| 100 MHz |
| 4 |
| Yes |
| No |
| Yes |
| No |
| No |
| Yes |
| No |
| No |
| $\$ 1995$ | 2247 A -value. Because at $\$ 2595$ for the 2246A and $\$ 1995$ for the 2245A, you won't find better performance for the dollar.

Start looking for trouble today.


Peerless troubleshooting power is only a phone call away.
To order your 2247A, 2246A or 2245A or for more information and applications assistance, contact your Tek representative. Or call us direct at:
1-800-426-2200

Tektronix


No costly School. No commuting to class. The Original Home-Study course prepares jou for the "FCC Commercial Radiotelephone License". This valuable license is your "ticket" to thousands of exciting jobs in Communications, Radio-TV, Microwave, Computers, Radar, Avionics and more! You don't need a college degree to qualify, but you do need an FCC License. No Need to Quit Your Job or Go To School This proven course is easy, fast and low cost! GUARANTEED PASS - You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

## COMmAND PRODUCTIONS

FCC LICENSE TRAINING, Dept. 90
P.O. Box 2824, San Francisco, CA 94126 Please rush FREE details immediately!
NAME
ADDRESS
CITY STATE ZIP____

## If You Fix VCR's, Ask Yourself These Questions

Q Are Most VCR Problems Mechanical? A Yes, most agree more than 3 out of 4 VCR problems are due to a mechanical malfunction.
Q Are There Universal Test Tools Available Or Do You Have To Buy All The Different Tools Shown In Service Manuals?
A TENTEL provides easier to use, universal, more powerful gauges than all factory tools combined.
Q What Mechanical Measurements Should Be Made To Properly Check Out A VCR?
A Hold back tape tension, tension servo check, reel table heights, carriage alignment, tape guide height, take up torque, restoring torque, brake torques, FF/REW torques \& video head wear.
NEW - Just released 68 minute Video Training Tape covering over 28 mechanical VCR tests and
measurements $\mathbf{~ I N T R O D U C T O R Y ~} \mathbf{Q} \boldsymbol{4} \underline{95}$ PRICE Shipping Included

[^2]CIRCLE 189 ON FREE INFORMATION CARD
cluded, do care about picture quality. When I watch TV, I often find myself paying a lot more attention to the picture quality than to the programming. (Perhaps that is just as well, given the content of many of the programs!) However, HDTV will only be economically feasible if it can appeal to a truly mass market. I do not believe that mass market exists. People will buy gimmicks and convenience features-remote controls, VCR's, simultaneous viewing of two or more pictures, etc.-but most people do not really care about quality.
That is also evident if one remembers the failure of the socalled 1,000-line high-definition system that was broadcast in the Paris, France region for several years. TV sets that use the VIRS signals broadcast by major networks to adjust the receiver continuously, largely overcoming many propagation defects, have not caught on. That is despite the fact that they can and do often considerably improve quality at a very low cost. Stereo TV sound has been much less than a great commercial success; many receivers that do use it employ dreadful loudspeakers.
Improved definition, using pres-ent-day NTSC signals, has some very severe limitations; but it has the overwhelming virtue of being possible without a truly mass market. A market of a few hundred thousand IDTV receivers per year would make it commercially viable. HDTV needs a market of at least 10 million receivers per year, in addition to a single agreedupon system and a very large investment by broadcasters.

I'm sorry to have to take this pessimistic viewpoint, but I fear it is a very valid one.

## L.D. THOMAS

## Georgetown, DE

IDTV is already a limited commercial success. North American Philips, for one, has been selling more IDTV sets than they can manufacture. Roughly 40 percent of all TV's being sold today are stereo equipped. That's not unsuccessful. Wait until sports fanatics see the Super Bowl on a wide screen with high-quality audio,
which HDTV will provide. Don't worry. It will sell.-Editor

## DE-MYSTIFYING MIDI

I enjoyed reading your articles on MIDI. I've been interested in knowing more about the subject, but I always found the explanations to be too complicated. The article, "Musical Instrument Digital Interface," (Radio-Electronics, August 1989) has been a great help, as it was both informative andmore important-it was also very easy to comprehend.
MATTHEW KREVAT
Brooklyn, NY

## ALTERED AUDIO AMP

The March 1989 issue was up to Radio-Electronics' usual very high standards. I especially enjoyed the article entitled "High-Powered Hi Fi Audio Amp for Your Home or Car."
What caught my eye was the power converter used to step up the voltage from 12 volts to 75 volts for the final stage (page 53). Winding that transformer may prove difficult. (Of course, you can always break down and buy one, but that isn't as much fun.)
My alternative method, shown in Fig. 1, borrows a page from the old-time radio power supplies used in cars in the 1920's and ' 30 's. The heart of the supply is two DPDT relays that are rated at 5 volts. You might have to fool with some of the values to get it to work properly, but the design is very forgiving, and if you know your P's and Q's with a VOM you might not need a scope.

Each relay is wired as a free-running astable oscillator, and because you can just about pick the coil resistance you like best, getting the right value for the commutating capacitor is not a real problem.

Note that this commutating capacitor is made from the two 100 $\mu \mathrm{F}$ electrolytic capacitors with the IN4001 diodes across them. This combination simulates a nonpolarized (NP) capacitor. Note that the cathodes of the diodes, and the positive $(+)$ ends of the capacitors face one another.

The frequency of oscillation is usually about 1 kHz , which causes the relays to hum faintly. That


FIG. 1
humming is usually not very loud, and if the circuit is used in a car, it can be placed under the hood or in the trunk.
JIM PARSONS
Rapid City, SD

## RESPONSE FROM THE RIGHT

Please stick to pure science and technology in your "Letters" column. Please don't print letters the like of Paul Schick's on HDTV (Ra-dio-Electronics, July 1989).

We get enough sour grapes from the liberal air-heads in the editorial pages of our newspapers. Those kinds of statements have their hidden agenda passed off as tongue-in-cheek humor.

That kind of garbage is out of place in a prestigious magazine such as Radio-Electronics.
DONALD C. ROSS
San Jose, CA

## RECOMMENDED READING

I have been a subscriber to Ra-dio-Electronics for a long time. I served in the U.S. Navy for 30 years, both as an enlisted man and as an officer, but always in some field of electronics.

A series of articles titled "Annals of Radiation" recently appeared in the June 12, June 19, and June 26 issues of the New Yorker magazine. Please look that series of articles over and, if you think it is warranted, recommend it to all your readers. I feel that everyone who is planning a career in the electrical field, those already in the field, and every young person who is planning to start up a home and a family should be aware of the extremely valuable information that is presented in those articles.

I was exposed to heavy doses of RADAR microwave radiation during my many years in the Navy, and I recently had a brain tumor removed. Reading those articles made me wonder.
ROY A. NORMAN
LCDR USN, Retired
Brunswick, GA

We have read those articles and are very concerned about some of the issues they raised. We feel that they should be required reading for not just some people, but for everyone.-Editor


The Pulse of Dependable Communications Crystek Crystals offers their new 16 page FREE catalog of crrstals and ossillators. Offering state-otthe-art crystal components manulactured by the latess dutomated technology. Custom
designed or "oft the shelf". Crystek meess the need, worldwide. Write or call lodidil

## CRYSTEK CORPORATION

DIVIIION OF WHITEHALL CORPORATION
2351/2371 Grystal Dr. - Ft. Myers, FL 33907
P.O. Box 06135 - Ft. Myers, FL $33906-6135$

TOLL FREE 1-800-237-3061
(813) 936-2109 - TWX 510-951-7448


CIRCLE 69 ON FREE INFORMATION CARD

# EquIPMENT REPORTS 

## ACE Communications AOR AR-2515 Communications Receiver

One radio for scanner buffs and SWL's!


CIRCLE 42 ON FREE INFORMATION CARD

SHORTWAVE LISTENERS AND SCANNER enthusiasts have always been divided into two camps. One is interested in DX-ing and in getting news and views from around the world. The other is looking for the faster-paced excitement that comes from hearing real-time action on the local police, fire, and other public-service bands. But a new piece of equipment may bring the two camps closer together: the AOR AR-2515 communications receiver from ACE Communications ( 10707 East 106 St., Indianapolis, IN 48256). It is one of the few receivers that gives the shortwave listener the frequency coverage and performance he desires, while delivering speed, coverage, and memory capability to the scanner buff.

The $A R-2515$ boasts a frequency coverage from 5 MHz to 1500 MHz , which includes international shortwave broadcasts, amateur bands, TV audio, FM broadcasts, VHF aircraft, various government communications, NOAA weather broadcasts, VHF aircraft, cellular telephone, and more. (We should point out that reception of various frequencies covered by the receiver, including cellular frequencies, is forbidden by the Electronic Communications Privacy Act of 1986.) Three operating modes are supported: AM, Wide-band FM,
(WFM) and Narrow-band FM (NFM).

The memory capabilities of the receiver are impressive. Sixty-two banks of 32 frequencies each provide a total of 1984 scannable frequencies. Any number of banks can be linked for scanning. So, for example, you can scan one band of 32 frequencies, or you can link all 62 banks and scan through the almost 2000 frequencies in memory. An additional 18 banks are provided for search pairs; banks 63 through 79 can contain the upper and lower frequency limit for searching out new and unknown frequencies that are in use in your area.

The scanning speed of the receiver is, at best, about 36 channels per second. That decreases if the frequencies in a scanning bank are widely separated, or if mode changes are required, etc. If you're willing to ignore the decrease in scanning speeds, you can create some interesting and useful banks. For example, we filled one bank with some frequencies in which we were often interested. It included the local National Weather Service broadcasts, WWV shortwave broadcasts, and a couple of local FM broadcast stations. While those might be considered to be unusual scanner frequencies, they
do point out the versatility of the AR-2515.

Alternatively, in search mode, the scanner can be used as a conventional receiver. Tuning can be accomplished by direct-frequency keypad entry, turning the rotary tuning knob, or pushing up or down tuning buttons. Each click of the tuning knob, or each push of the tuning buttons, changes the receive frequency by a user-selected increment of $5,10,12.5$, or 25 kHz .

The receiver is built into a compact gray case that measures about $7 \times 5-1 / 2 \times 2-1 / 2$ inches (although it's not really rectangular). The front panel, which measures about $3 \times 5$ inches, tilts upward and is crowded with 23 pushbuttons, three rotary knobs, an LCD frequency display, and an LED sig-nal-strength meter. Despite the crowded appearance, the controls are surprisingly easy to use.

## Computer interface

One of our favorite features of the $A R-2515$ is its computer interface. The receiver can communicate with any personal computer that offers an RS-232 interface. Rates of 300,1200 , or 9600 baud are supported. While ACE does have a communications package available, any general communications software is adequate.

The interface allows you to control all of the functions of the receiver from your computer keyboard, except for volume and squelch. You can upload complete banks of frequencies, change operating modes, switch scanning banks, and even turn on the LCD light.

Perhaps the most useful attribute of the communications capability is that it allows the receiver to send important information to the computer. Our favorite command puts the receiver in an autocontinued on page 32

AVCOM PSA－65A Spectrum Analyzer<br>An inexpensive，quality spectrum analyzer from 2 $\mathrm{MHz}-1 \mathrm{GHz}$ ．

CIRCLE 43 ON FREE INFORMATION CARD

VERY LIKELY，MANY OF YOU HAVE AL－ ways wanted a professional spec－ trum analyzer，whether for trou－ bleshooting，or experimentation． However，every time you＇ve looked at a catalog and seen prices that start in the $\$ 10-20 \mathrm{~K}$ range， your jaw drops．Unless you＇re in a large corporate firm with mega－ buck budgets，you＇ve probably had no chance of getting one until now．

With the Model PSA－65A 2 $\mathrm{MHz}-1 \mathrm{GHz}$ Spectrum Analyzer from AVCOM Corp．（500 South－ lake Blvd．，Richmond，VA 23236）， that problem is over．The basic cost is $\$ 2,675$ ，and many reason－ ably priced accessories，like an FM demodulator（\＄185），high－perfor－ mance attachable log－periodic an－ tennas（about \＄239），and carrying case（\＄89．95）are available．At 11．5－ $\times 5.5-\times 13.5$ inches and a weight of 18 pounds，it＇s as portable as a standard portable oscilloscope．

## General controls and jacks

The PSA－65A has numerous， convenient，and well－labeled con－ trols．They＇re all on the front pan－ el，and grouped according to function in a color－coded gray－ and－white format．The PSA－65A is powered by $120-$ volt， $60-\mathrm{Hz} \mathrm{AC}$ ， but can run using an internal gel－ cell battery with recharger．The POWER switch has BAT，STANDBY，and LINE positions．The battery charger （BAT CHG）can operate in any pOWER sWITCH position，and needs about three hours to charge sufficiently for prolonged use．

The audio demod pot－ entiometer is the volume control for listening to AM or FM broad－ casts，and has a built－in SPST ON／ OFF switch．However，the PSA－65A won＇t let you observe a spectrum and listen to audio simultaneously．

That would require having two separate tuners，one to be swept through the observable spectrum， and the other tuned to the center frequency．

An earphone jack is provided （AUDIO OUT），and an AUX jack is for present and future optional ac－ cessories．The sWEEP RATE control varies the speed of the sweep－rate generator．For maximum accuracy in vertical amplitude measure－ ments，the sweep is set as slow as possible．A BNC jack is used for RF input from $2 \mathrm{MHz}-1 \mathrm{GHz}$ range， and a maximum power of 15 dBm ， or 31.6 mW ．

## Vertical amplitude controls

The CRT is located in the upper left of the front panel，and the grat－ icule is calibrated vertically in dBm and dBmV ，and horizontally in dBmV ．Those two units are dB rela－ tive to a milliwatt（ mW ）and a milli－ volt（ mV ），respectively．The PSA－65A has vertical position and reference level knobs，and a VERTICAL SENSITIVITY switch to select between $10 \mathrm{~dB} /$ div or $2 \mathrm{~dB} / \mathrm{div}$（for both dBm and dBmV ）．The reference level allows vertical ex－ pansion by vertically moving the signal－noise floor，and is calibrated with the vertical sensitivity set to 10 $\mathrm{dB} / \mathrm{div}$ ，but not $2 \mathrm{~dB} /$ div．

## Horizontal and tuning controls

The main function switch on the PSA－65A is ZERO SPAN，which deter－ mines whether the instrument is operating in AUDIO，NORM，or MOMEN mode．In AUDIO mode，the PSA－65A displays an AM or FM broadcast by quadrature detec－ tion，at the frequency indicated on the 4 －digit Center frequency mhz LCD．The quadrature detector is mainly for FM，but also demodu－ lates AM intelligibly．

In NORM mode，the PSA－65A dis－ plays a frequency spectrum，being calibrated when the VAR SPAN knob is in the cal position．As it＇s rotated toward ZERO SPAN，the observed spectrum segment on the CRT ex－ pands horizontally about the cen－ ter frequency，narrowing in band－ width．The Zero SPAN＋xsC SEtTING of the var span knob is an ideal， because the time waveform on the CRT is never a pure sinusoid，since the horizontal SPAN control has a finite nonzero bandwidth filter for each setting（more below）．

The audio mode automatically gives a ZERO SPAN display．The MOMEN mode momentarily does so，to let the user alter the center tUNING frequency easily．In NORM mode，there＇s a 0.5 second lag be－ tween moving the tuning knob， and the corresponding update of the LCD．

In the audio and momen modes， no such lag exists，and any TUNING knob rotation is instantly reflected on the LCD．The center frequency is controlled by two potentiome－ ters，one a 10－turn version for main TUNING，and a single－turn FINE TUNE control．The FINE TUNE appears to have a range of about 7 MHz ，but is asymmetric and nonlinear in effect．

For each horizontal SPAN setting， there＇s a nonzero filter bandwidth resolution，which gives rise to the time effects observed at ZERO SPAN （discussed shortly）．The resolution is 3 MHz at $100 \mathrm{MHz} / \operatorname{div}, 1 \mathrm{MHz}$ at $50 \mathrm{MHz} / \mathrm{div}, 300 \mathrm{kHz}$ at $10 \mathrm{MHz} / \mathrm{div}$ ， 150 kHz at $5 \mathrm{MHz} / \mathrm{div}$ ，and normally 75 kHz at either $1 \mathrm{MHz} /$ div or 200 $\mathrm{kHz} / \mathrm{div}$ ．The user can also opt for an additional 10 kHz filter for the $200 \mathrm{kHz} /$ div setting，if desired．

One good way to observe the effects of those filters is by observ－ ing a TV station spectrum．The AM video is always 4.5 MHz below the FM audio．If you center the video on the CRT with the var SPAN con－ trol set to CAL，and then rotate it to zERO SPAN，you＇d see the actual time waveform，just as if you were using an oscilloscope．

That waveform would be com－ pletely visible as the VAR SPAN is rotated toward Zero span．In the Cal position，you＇d see the spec－ trum，but possibly also see a spu－ rious representation of the time continued on page 32

# New Products 

## ANALOG/DIGITAL STOR-

 AGE SCOPE. With the help of custom IC's, the Tektronix' 2232 portable analog/Digital Storage Oscilloscope (DSO) delivers a $100-\mathrm{MS} / \mathrm{s}$ sample rate and a $100-\mathrm{MHz}$ bandwidth. Its proprietary peak-detection capability allows for glitch capture as narrow as 10 ns at all sweep speeds, including dual-channel operation.The scope has several features designed to make it easy to use, including onscreen readout of scale factors and cursor measurements of voltage and time. Bezel buttons provide quick access to saved reference waveforms and the full range of menu selections. Trigger-level readout allows the user to set the voltage level for the trigger point and read it directly on screen, which can save a lot of time in single-shot wave-form-capture and "babysitting" (unattended monitoring) applications. For added triggering flexibility, both low- and high-frequency reject capabilities assure a stable, usable trigger even on noisy or complex signals.

With both analog and digital capabilities, and $100-\mathrm{MS} / \mathrm{s}$


## CIRCLE 10 ON FREE INFORMATION CARD

sampling, the DSO is a versatile general-purpose instrument. Its analog operation allows the display of complex waveforms such as video signals and realtime update of changing signals. Digital capabilities include waveform storage, peak detection, and pretriggering. When troubleshooting digital devices, the sampling rate allows the capture of single-shot events up to 10 MHz . With the DSO's ability to store as many as 29 waveform sets, users can build a
library of saved waveforms. Known-good waveforms can be stored for reference, and unknown waveforms can be captured in the field and stored for later analysis. An RS-232-C interface option lets such waveforms be transferred by modem.

The 2232 portable digital storage oscilloscope has a list price of $\$ 5,495.00$. The RS-232-C and GPIB interface options cost $\$ 300.00$ each.-Tektronix, P.O. Box 1700, Beaverton, OR 97075; 1-800-426-2200.

## VIDEO TEST GENERATOR.

The model 408 gen-lockable NTSC video test signal generator from Leader Instruments provides over 80 test patterns in composite; $S$ VHS; RGB; and Y, R-Y, and B-Y output formats with RF channel coverage of all broadcast and cable channels. Multiburst, video sweep, SMPTE color bars, modulated and unmodulated staircase, raster, and


## CIRCLE 11 ON FREE INFORMATION CARD

crosshatch are just a sampling of the available test patterns.

A menu-driven, multipurpose data-control board
with an LCD readout is used to set up channel frequencies and video-signal-driven specifications. Control of key video-signal levelssuch as sync, burst, luminance, chrominance, and setup-is provided, along with RF-frequency selection. As many as 100 sets of video-level specifications and channels can be stored in memory and instantly recalled as needed.

The model 408 video test signal generator costs \$3,395.00.-Leader Instruments Corporation, 380 Oser Avenue, Hauppauge, NY 11788.

## 16-BIT CONVERTER

 BOARDS. Designed to provide a full-featured, lowcost alternative to custom or microcomputer-based systems, MetraByte's MBC$G A D$ and $M B C-D A C$ plug-in daughter boards for Macintosh II's and SE's offer highresolution data sampling and conversion.The MBC-GAD performs a 16-bit A/D conversion at a rate of 16,000 samples per second, with a resolution of 1 part in 65,536 and $0.003 \%$ measurement accuracy. The differential analog input may be configured for voltage ranges of $\pm 2.5, \pm 5$, or $\pm 10$ volts; 0 to 5 volts; or 0 to 10 volts. The analog input is accessible via a standard RCA phono connector or a 10-pin ribbon-cable connector. Two MBC-GAD'S can be installed on one motherboard to create multichannel subsystems.
 CIRCLE 12 ON FREE
INFORMATION CARD

The MBC-DAC provides two independent, 16 -bit analog-output channels, which are capable of processing data at 100,000 samples per second to voltage
accuracies of $0.006 \%$ ．The voltage range of each out－ put channel is fixed at $\pm 10$ volts，and the channels are accessible via a 10 －pin rib－ bon－cable connector．

Both daughter boards can be driven from programs written in high－level lan－ guages，such as BASIC，PAS－ CAL，C，or FORTRAN．When used with MetraByte＇s MBC－625 motherboard， they provide high－speed， high－resolution data－ac－ quisition capabilities for Macintosh users．

The MBC－GAD $16-\mathrm{kHz} \mathrm{A}$ D converter and the MBC－ DAC $100-\mathrm{kHz}$ D／A converter cost $\$ 550.00$ and $\$ 475.00$ ，re－ spectively．The MBC－625 motherboard costs \＄1，290．00．－MetraByte Cor－ poration， 440 Myles Stand－ ish Boulevard，Taunton，MA 02780.

AUDIO EXPANDERS．The $A X$ 101 CD phono－input adapter and the $A X 100$ auxiliary se－ lector from Johnson Elec－ tronics Labs expand the
input－selection capability of stereo amplifiers．


## CIRCLE 13 ON FREE INFORMATION CARD

The phono－input adapter allows amplifiers that do not have a CD or auxiliary input to accept a CD player－or any other auxiliary device－ through the magnetic pho－ no input．Its passive－circuit design minimizes noise and distortion．The $A X 101 C D$ features a selector switch for CD or phono operation， RIAA response accuracy to within 1 dB ，and chrome－ plated housing with re－ movable mounting tabs for easy mounting．

The $A X 100$ enhances am－ plifiers with limited input capability，increasing selec－
tion to as many as five dif－ ferent input sources．It is packaged in a fully－ shielded，black ABS－plastic housing，and features silver－ plated switch contacts，dual tape outputs，and a tape－ monitor switch to allow monitoring of either record－ er．Stereo cable is included．
The $A X 101 C D$ phono－in－ put adapter and the $A X 100$ auxiliary selector cost $\$ 89.95$ and \＄29．95，respec－ tively．－Johnson Electronics Labs，Inc．， 409 Angus Blvd． \＃29N，Warner Robins，GA 31088.

SIGNAL GENERATOR／ COUNTER．Combining a signal generator and a fre－ quency counter in one unit， Elenco＇s SG－9500 can gener－ ate RF frequencies from 100 kHz to 150 MHz and can measure external frequen－ cies up to 150 MHz ．Ac－ curacy is $\pm$ count $/ \pm 1$ digit， and the RF output is $100-\mathrm{MV}$ RMS，up to 35 MHz ．A switch with fine－adjustment control lets the user select
$0-\mathrm{dB}$ or $20-\mathrm{dB}$ output．The instrument features $1-\mathrm{kHz}$ internal modulation，and in－ put voltage is less than 50 mV ．


## CIRCLE 14 ON FREE

 INFORMATION CARDThe SG－9500 signal gener－ ator with built－in frequency counter costs $\$ 349.00$ ．－Ele－ nco Electronics Inc．， 150 West Carpenter Avenue， Wheeling，IL 60090.

PC THUMBSCREWS．A vari－ ety of thumbscrews from $P C$ Pro are custom－sized to fit XT＇s and AT＇s and make it easier for PC users to get in－ side their computers． Thumbytes，Thumbits，and Thumbles eliminate the need for the usual assort－

> With Just One Probe Connection, You Can Confidently Analyze Any Waveform To 100 MHz, 10 Times Faster, 10 Times More Accurately, Absolutely Error Free, Guaranteed - Or Your Money Back!


There are other digital readout oscilloscopes，but none of them completely eliminate graticule counting and calculations like the SC61 Waveform Analyzer．The innovative，time－saving AUTO－TRACKING ${ }^{\text {TM }}$ digital readout automatically gives you every waveform parameter you need for fast troubleshooting．

The SC61 Waveform Analyzer is a triple patented high performance scope that provides you with a digital LCD read－out of all key waveform parameters（DC volts，peak－to－peak volts，and frequency）at the push of a button，and all with one probe connection．

Other time－saving features include exclusive ECL sync circuits that allow you to lock quickly onto waveforms up to 100 MHz ．Plus， with 3000 volts of input protection，you never have to worry about an expensive front end repair job．

Call 1－800－SENCORE to find out more about what the SC61 can do for your service business．In Canada call 1－800－851－8866．


3200 Sencore Drive，Sioux Falls，SD 57107 $100 \%$ American Made
ment of nutdrivers, slotand Philips-head screwdrivers, and nuts and screws used to service personal computers. Color-coded plastic caps are mated to screws, resulting in durable thumbscrews that are available in an array of sizes and lengths for convenient replacement of slide-top and adapter-card holddown screws.

Thumbytes and Thumbits provide flip-top ease for non-flip-top PC's. They are sold in sets of five, and fit virtually any slide-top case. Thumbles hold I/O cards tightly in place, and make it


CIRCLE 15 ON FREE INFORMATION CARD
easier to remove cards. They are also sold in sets of five. Knurled grips make it harder to lose screws inside the computer. No tools are needed in order to access switches or jumpers after installation.

Thumbytes and Thumbits each cost $\$ 5.00$ per set of five; Thumbles cost $\$ 10.00$ per set of five.-PC Pro Company, P.O. Box 358, AIlen, TX 75002.

## "TEST" VIDEODISC.

 Reference Recording's " A Video Standard," is a disc for the set up and alignment of home-entertainment systems. Containing comprehensive audio and video test signals and a wide variety of audio and video demonstration material, the laser videodisc is intended to help consumers optimize their home-viewing experience, and retrieve from video programs exactly what the producers put in.The videodisc was produced by Joe Kane, who
chairs the Society of Motion Picture and Television Engineers (SMPTE) Working Group on Monitor Calibration, which is responsible for setting NTSC standards for picture quality. The videodisc was produced in D1, the $4: 2: 2$ component digi-tal-video format that is the most advanced recording system available for the current 525 -line video system. For the highest possible accuracy, most of the audio test tones were computer generated by Dolby Laboratories, and converted to analog for the first time at


CIRCLE 16 ON FREE
INFORMATION CARD
the videodisc player.
The disc's test features include instructions for analyzing viewing-device quality along with specific test signals for the individual display parameters that combine to form a good picture. Comprehensive calibration instructions are provided, along with the necessary test signals and video-system calibration signals. For audio tests, there are digitally-generated audio tones and sweep signals, specific test signals for digital-to-analog converters; a dynamic-range tone-level check; frequency information from 15 Hz to 21 kHz ; and instructions on how to use the test tones.

The videodisc also provides demonstration features concerning the transfer of film to video, analog and digital video graphics, electronic video effects and animation, and reference pictures for skin-tone and color fidelity. Audio demon-
continued on page 95



## START WITH CIE.

Microprocessor Technology. Satellite Communications. Robotics. Wherever you want to go in electronics... start first with CIE.

Why CIE? Because we're the leader in teaching electronics through independent study. Consider this. We teach over 25,000 students from all over the United States and in over 70 foreign countries. And we've been doing it for over 50 years, helping thousands of men and women get started in electronics careers.

We offer flexible training to meet your needs. You can start at the beginner level or, if you already know something about electronics, you may want to start at a higher level. But wherever you start, you can go as far as you like. You can even earn your Associate in Applied Science Degree in Electronics.

Let us get you started today. Just call toll-free 1-800-321-2155 (in Ohio, 1-800-362-2105) or mail in CIRCLE 60 ON FREE INFORMATION CARD
the handy reply coupon or card below to:
Cleveland Institute of Electronics,
1776 East 17th Street, Cleveland, Ohio 44114.

## 들 <br> World Headquarters

## Cleveland Institute of Electronics, Inc.

1776 East 174h Street - Cleveland, Ohio 44114
$\square$ Please send your independent study catalog.
For your convenience, CIE will try to have a representative contact you - there is no obligation.

Print Name $\qquad$
Address Apt.
City $\qquad$ State Zip $\qquad$
Age $\qquad$
$\qquad$
Check box for G.I. Bill bulletin on Educational Benefits $\square$ Veteran $\square$ Active Duty MAIL TODAY!
Just call toll-free 1-800-321-2155 (in Ohio, 1-800-362-2105)

## SCANNING RECEIVER

continued from page 24
frequency mode. In that mode, whenever the scanner stops at a new station, the frequency and signal strength of the station are output to the computer. We found this novel way of searching for new scanner frequencies to be quite efficient.

The $A R-2515$ comes equipped with a telescopic antenna, DC power cord, AC adapter, and an owner's manual that, while adequate, could be much more informative. ACE Communications offers several accessories, including a wide-band amplifier and an external BFO (Beat-Frequency Oscillator) for making SSB (Single SideBand) transmissions intelligible.

The suggested price of the $A R-2515$ scanning communications receiver is $\$ 695$. While we certainly cannot call that inexpensive, we do feel confident calling it a bargain.

## SPECTRUM ANALYZER

 continued from page 25waveform superposed on it, for certain settings of the horizontal SPAN. That is because of the techniques used to design the instrument, not because of modulation.

Thus, VAR SPAN doesn't really produce a 0 Hz span, since that would be a pure monochromatic tone. The TV waveform containing the sync pulses is really a timedependent voltage, whereas the video spectral peak is a true fre-quency-dependent amplitude (voltage or power). If you repeat for the audio, you'll see the timedependent audio waveform, and it'll change amplitude and frequency as the sound varies. However, the presentation, while that of an oscilloscope, not a spectrum analyzer, is untriggered and drifts across the screen.

## Horizontal calibration

The horizontal needs to be calibrated each time the instrument is
turned on and/or the horiz posiTION is moved, which can be somewhat tricky if not done carefully. The user tunes a signal peak onto the center of the graticule, with the Var Span knob set to the cal position. The user then rotates the VAR SPAN knob counterclockwise, watching that peak. It'll expand in width, but should, ideally, remain centered, and not deflect to either side.

If it does deflect, then as the var SPAN is rotated, the user alternates between the VAR SPAN and HORIZ POSITION knobs, to recenter the now-expanding peak. The reason for alternating between them is that as the peak expands, it's maximum becomes more difficult to locate, since the display appears to be flatter. Thus, rotating each knob in turn gives greater accuracy and control, and an opportunity to maintain a visual reference on the maximum as the peak changes shape.

Once completed, with the VAR Var span set to zero span and the continued on page 81


Surround yourself with a vast assortment of kit or ready-to-use electronic products from the FREE Heathkit Catalog. The Heathkit Catalog contains innovative home theater components, amateur radio and weather equipment, laptop computers, selfstudy electronics courses and challenging starter kits for the first-time builder. Order your FREE Heathkit Catalog NOW!
1-800-44-HEATH
(1-800-444-3284)
Send to: Heath Company, Dept. 020834 Benton Harbor, Michigan 49022
Name
Address
1 City


CIRCLE 86 ON FREE INFORMATION CARD


THROUGH HOME STUDY
Our New and Highly Effective Advanced-Placement Program for experienced Electronic Technicians grants credit for previous Schooling and Professional Experience, and can greatly reduce the time required to complete Program and reach graduation. No residence schooling required for qualified Electronic Technicians. Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree. Upgrade your status and pay to the Engineering Level. Advance Rapidly! Many finish in 12 months or less. Students and graduates in all 50 States and throughout the World. Established Over 40 Years! Write for free Descriptive Literature.
COOK'S INSTITUTE
OF ELECTRONICS ENGINEERING
© 돕붑
4251 CYPRESS DRIVE
JACKSON. MISSISSIPPI 39212

IF YOU＇RE LIKE MOST VIDEO－CAMERA owners，you＇ve built up an inventory of hours and hours of home video movies．If you like to show your movies to others，you＇ve undoubtedly found that even your best friends won＇t sit through an hour－long video of your son＇s first birthday．The solu－ tion is to edit your tapes into groups of short scenes．The trick is to do it with professional results．

The problem that arises is how to make the transitions between scenes or sources as smoothly as possible， without visually or a esthetically disturbing transitions．Our Video Scene Switcher is the key to smooth transitions．

In order to switch between video channels with a minimum of distur－ bance，several technical requirements must be met：
－Sources must be identical in polar－ ity and type（for example，both NTSC with negative sync）
－Sources must have the same levels． That requirement can be met using gain adjustments．
－Color－burst phase must match in order to reduce color shifts between scenes．
－Terminations and impedance matching must be considered in order to reduce reflections and＂ghosting．＂
－The time phases of the sources must be constant and have a fixed relationship．The sync pulses must co－ incide both in time of occurrence and frequency，both vertical and horizon－ tal．

Most of the time there is no prob－ lem in meeting the first four require－ ments，as they are under direct control of the system operator．However，the last requirement，that the video sources have sync pulses in phase， does present a problem．That＇s be－ cause，when using two separate VCR＇s，a VCR and a camera，or a VCR and an over－the－air source，there is generally no relationship between sync phases．

The term＂genlock＂is used to de－ scribe the act of using a master syn－

# VIDEO SCENE SWITCHER 

## Make your next transition a smooth one！

WILLIAM SHEETS and RUDOLF F．GRAF

chronization source to control the sync phase of other sources．Some video equipment has genlock inputs but，most of the time，the availability of two genlocked sources cannot be relied on．

When the signal source to a video monitor，TV receiver，or VCR is sud－ denly switched，the synchronizing circuits of the video device experi－ ence a discontinuity of input，in fre－ quency，phase，or both，depending on
＂amateur＂look to a program，and should be eliminated．

A common way to deal with the problem is to fade to balck，or some other level．During this interval， switching takes place，and since the screen is black，no transient effects are noticed．After a predetermined time，the new video is switched in and then the fade from black to program is performed．

There are other methods that can be

the moment of switch－
ing in most instances．If，by chance， the vertical and horizontal sync pulses of both sources are coincident in time （in phase）at the moment of switch－ ing，there will be no noticeable distur－ bance．If，however，they are not（the usual case），a momentary loss of syn－ chronization will occur．Depending on the characteristics of the sync sys－ tem in the video device in use，a mo－ mentary flicker，jump，tear，or roll will occur in the picture－it＇s objectiona－ ble，esthetically unpleasant，gives an
used．A black－
over can be＂keyed＂into the picture； for example，a black over can be wiped across the picture，much like a curtain，either horizontally or ver－ tically，or both（diagonally）．A black－ over can also be broken up like a series of vertical or horizontal strips that gradually enlarge，covering the picture with the effect of a Venetian blind．By doing that vertically and horizontally at the same time，black


FIG. 1-VARIOUS FADES, WIPES, AND EFFECTS can be keyed into the picture. You don't have to stick to simple horizontal or vertical fades, as complex fades are also possible; see how Danny disappears in $a, b$, and $c$. A diagonal wipe from regular video to effects video is shown in $d$, expanding vertical bars "consume" the picture in e, expanding diamond-like patterns in $f$, and $g, h$, and $i$ show three additional wipe patterns.
dots appear in the picture that expand in size to first overlap and then completely obscure the picture. Figure 1 shows those patterns.

The act of "keying" is actually video switching using waveforms that are tied to the sync pulses or other picture elements, such as the luminance level (luminance keying) or chroma level (chrominance keying). By producing such waveforms, a great variety of switching and special effects can be produced. Note that the effects are performed steadily on the video, and that the sync pulses must remain unaltered during the switching process.

For wipes, keying, or other switching between two sources without an intermediate fade, the two sources must be genlocked or synchronous. There is no easy way around that, save for a large video buffer memory, or
some form of synchronizing storage system. However, that shouldn't be considered a serious limitation, since many fade-to-black techniques have a pleasing effect, and they provide a more defined differentiation between scenes.

## Basic operation

The Scene Switcher basically consists of two parts, as shown in the block diagram in Fig. 2. A video switching system is used to switch in various video effects, fade levels, and to select channel $1(\mathrm{CHI})$ or channel 2 ( CH 2 ), and a waveform generator is used to generate keying waveforms to drive the analog switches at precisely timed intervals.

There are two video channels $(\mathrm{CH} 1$ and CH 2 ), but we will describe the operation of only CH , because the
two are identical. Each channel has two switch-selected inputs, main or auxiliary, and each channel is fed to a splitter circuit that separates the video and sync components. That way, the video can be processed separately from the sync. The sync is not processed in any way.

The video from CH 1 first passes through an analog switch (NORMAL EFFECTS) that either passes it or selects CHI video that has been altered by an external special-effects unit (for example, the Video Palette described in the September and October 1987 issues of Radio-Electronics). Since the video from the special-effects unit is inherently synchronous with the CH video, direct switching is possible, and you can wipe the altered scene over the original one.

Next, the video is fed to another
analog switch, the fade selector. The output of that switch is either unaltered video or a DC background level from the fade level generator, which is variable between black (about zero volts) and white ( 1 to 1.5 volts). That is determined by the setting of the fade level control, which gets its switch signals from the control panel and the keying generator. During a line-scan internal, several switching actions may take place, causing various pattern configurations to be generated on the monitor screen.

Next, the video goes to a switch network that routes it to either side of the FADER control, or selects CH or CH 2 . Both analog switches are driven by the keying waveform from the keying generator and control panel; switching may take place several times during a line scan, depending on the effects desired. The output from the FADER control is fed to a
summing amplifier, and mixed with appropriate sync. The system output is composite video.

The keying generator consists of a set of sawtooth-wave generators. Sync from CH1 or CH 2 is fed to a phase-locked loop, where constant outputs of 15.74 kHz and 60 Hz are generated, phase locked to the video input waveform. Those outputs are fed to the horizontal and vertical sawtooth generators.

The generators each produce two waveforms; a sawtooth at eight times the input frequency and a sawtooth at the input frequency. The sawtooth waveforms are fed to a comparator, whose "trip" level is adjustable. The sawtooth is compared to the trip level from the keying control, which may be manual, or automatic.

When the sawtooth exceeds the trip level, the comparator switches. Since the sawtooth level varies synchronously with the horizontal, or
vertical, or both sweeps, varying the trip level causes the comparator to switch at varying points in either the horizontal or vertical scan. Therefore, since the comparator output is the keying waveform, we can control the position of the switching at any desired point in either the horizontal or vertical scan cycle.

The switching waveform is fed to the control panel and then to the correct analog switches in the video channels. Several switching patterns can be generated, using the $\times 1$ or $\times 8$ vertical, the $\times 1$ or $\times 8$ horizontal, or various combinations.
The circuit features external access capability to the switch signals and sync outputs via emitter followers. That permits using an external computer or microprocessor to generate other switching patterns than we have here, if desired. That is left as a project for the experimenter or computer hobbyist.


FIG. 2-THE SCENE SWITCHER BASICALLY CONSISTS OF TWO PARTS, as shown in this block diagram. A video switching system is used to switch in various video effects, fade levels, and to select channel 1 (CH1) or channel 2 (CH2). A waveform generator is used to generate keying waveforms to drive the analog switches at precisely timed intervals.

## Circuitry

Due to the large amount of circuitry, very detailed descriptions of every circuit will not be given. Only a single example of each essential block will be described in detail, since much of the circuitry is repetitive.

Referring to Fig. 3, video is fed through Cl and filter R1-C2 (to remove excess noise) to sync-separator ICl , an LM1881N; it separates the horizontal and vertical sync from the video. Composite horizontal sync (negative-going pulses) appears at pin 1 , and is then fed to IC2-a, the hori-
zontal-delay multivibrator, in which R5, R6 and C6 determine the period.

The multivibrator produces an 8microsecond pulse triggered by the leading edge of the sync pulse. The 8microsecond pulse is used to initiate another pulse generated by IC2-b, which is active only during the linescan portion (the video) of the video waveform. The IC2-b pulse is used to gate the video-only component from the composite video waveform (R7, R8, and C7 set the width of the pulse at 53 microseconds).

IC3-a and IC3-b perform a similar
function on the vertical sync pulses from pin 3 of ICl ; IC3-a is the delay and IC3-b generates a 16 -microsecond pulse which is active during individual fields of the TV signal. During vertical-retrace intervals, it is desirable not to gate on the composite video, so horizontal multivibrator IC2-b is locked out during the ver-tical-blanking interval, when pin 10 is low.

Figure 4 shows the sync selector and PLL block. When sync select (pin 2) of IC4 is high SYNC 1 selected, and when it's low SYnC 2 is selected.


FIG. 3-SHOWN HERE IS A SYNC SPLITTER. Video is fed to pin 1 of sync-separator IC1.
Composite horizontal sync appears at pin 1, and composite vertical sync appears at pin 3.


FIG. 4-SYNC SELECTOR AND PLL BLOCK. When pin 2 (SYNC SELECT) of IC4 is high, sYNC1
selected, and when it's low SYNC 2 is selected.

## PARTS LIST

All resistors are $1 / 4$－watt， $10 \%$ ，un－ less otherwise indicated
R1，R201－ 680 ohms
R2，R3，R29，R62－R64，R134，R135， R127，R128，R140，R141， R143－R150，R202，R203－10 ohms
R4，R204－680，000 ohms
R5，R7，R205，R207－33，000 ohms
R6，R8，R10，R12，R42，R45，R47， R49，R206，R208，R210，R212－ 25,000 ohms，potentiometer
R9，R11，R32，R33，R36－R40，R52， R53，R58，R59，R130，R209－ 4700 ohms
R15，R17，R21，R23，R28，R30，R31， R34，R41，R54－R56，R61，R100， R101，R104，R105，R112，R114， R118，R123，R124，R138a－R138t－ 2200 ohms
R16－3900 ohms
R13，R18，R213－ 3300 ohms
R19，R102，R103，R106，R111， R120－R122，R136－ 100,000 ohms
R20，R22－470 ohms
R25－100 ohms
R26，R27，R139a－R139f－330 ohms
R35，R57－5000 ohms，potentiome－ ter
R43，R50，R51－ 1000 ohms
R44－1 megohm
R46，R48，R113，R116，R119，R126， R129，R131，R142－ 10,000 ohms
R60－47，000 ohms
R132－ 68 ohms
R108，R133－ 82 ohms
R115，R125－2000 ohms，potentiom－ eter
R110，R117，R137－22，000 ohms
R24－ 15,000 ohms
Capacitors
C1，C8，C11，C19，C20，C33，C34，

C40，C101，C208－ $0.1 \mu \mathrm{~F}$ ，Mylar
C2，C12，C202－470 pF，ceramic disc
C3，C18，C27，C30，C35，C36，C37， C38，C41，C47，C50，C203，C307， C309，C311－ $10 \mu \mathrm{~F}, 16$ volts，elec－ trolytic
$\mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 13, \mathrm{C} 15, \mathrm{C} 17, \mathrm{C} 32$ ， C43－C45，C48，C49，C101，C102， C105，C106，C109－C116，C204， C205，С302，С303，C305，С306， C308，C310－0．01 $\mu \mathrm{F}$ ，ceramic disc
C6，C206－ 330 pF，NPO
C7，C207－ $0.0022 \mu$ F，Mylar
C9，C209－ $2.2 \mu \mathrm{~F}$ ，tantalum
C10，C16，C26，C28－0．047 $\mu \mathrm{F}, \mathrm{My}-$ lar
C14，C42－1 $\mu \mathrm{F}, 35$ volts，electrolytic
C21－ $120 \mathrm{pF}, \pm 5 \%$ ，NPO
C22－3－40 pF，trimmer
C23－22 pF，NPO
C24，C25，C29，C39－0．001 $\mu$ F，My－ lar
C31－470 pF，NPO
C103－5 pF，NPO
C104，C107－2－18 pF，trimmer
C301－ $4700 \mu \mathrm{~F}, 25$ volts，electrolytic
C304－2200 $\mu \mathrm{F}, 25$ volts，electrolytic

## Semiconductors

IC1，IC14－LM1881N video sync sep－ arator
IC2，IC3，IC15，IC16－CD4528B dual monostable multivibrator
IC4－ 7400 N quad 2 －input NAND gate
IC5－LM1800N PLL FM stereo de－ modulator
IC6，IC9－LM565N PLL IC
IC7，IC10－74C93 4－bit binary coun－ ter
IC8，IC11，IC12－TLO81 wide－band－ width JFET－input op－amp

IC13，IC21，IC22－LM318N op－amp IC17－IC20－CD4053B analog multi－ plexer／demultiplexer
IC301－LM7812 12－volt regulator
IC302－LM7805 5－volt regulator
IC303－LM7905－5－volt regulator
D1，D100－1N914B diode
D301－D303－1N4007 rectifier diode
Q1－Q3，Q5，Q6，Q101，Q103a－f， Q105－2N3904 NPN transistor
Q4，Q102，Q104a－f－2N3906 PNP transistor

## Other components

$\mathrm{L} 1-2.2 \mathrm{mH}$ coil
T1－120VAC $24 \mathrm{VAC}, 500 \mathrm{~mA}$ trans－ former
J1－J10－RCA jack
S1－S3－SPDT switch
S4，S10，S11－SPST switch
S5－S9－SPDT with center off
Miscellaneous：project case，wire， line cord，solder，etc．

> Note: A partial kit consisting of the two PC boards and only the parts that mount on them is available from North Country Radio, PO Box 53 , Wykagyl Station, New Rochelle, NY 10804 , for $\$ 137.50$. The kit does not contain any of the parts that mount off the board, such as the switches, control potentiometers, RCA jacks, power supply components, project case, etc. A set of two PC boards is available separately for $\$ 27.50$. Add $\$ 2.50$ to either order for postage and handling. New York residents must include sales tax.

Sync from pin 4 of IC4 is fed to a filter network（R16，R17，C10，C11，C12） and then to IC5，an LM1880 PLL． Components C13，C14，R18，and R19 help determine loop parameters；R20， R21，C22－C24，and L1 are for the internal oscillator of IC5 operating at 503 kHz ；and C19，C20，R22，and R23 are feedback components．

R24 and C16 are vertical－timing components necessary for correct op－ eration of IC5，and R25，C17，and C18 are supply decoupling compo－ nents．A signal at the horizontal fre－ quency appears across R26．Capaci－ tor C22 is adjusted for lockup with the SYNC 1 or SYNC 2 input．The outputs （pins 12 and 13）are fed to sawtooth generator circuits for vertical and horizontal frequencies，respectively．

The keying circuits are shown in

Fig．5．There are four circuits－two for horizontal and two for vertical． Horizontal square－wave pulses at the junction of C25 and C26 are differen－ tiated by C25 and R28．Therefore，Q1 is momentarily forward biased during sync intervals，and C33 is thus dis－ charged through R29．When Q 1 is cut off，C33 charges toward +5 volts through R30 until discharging again at the next sync pulse．Q2 and R31 form an emitter follower to interface the waveform，which is a sawtooth of about $1-2$ volts at the horizontal fre－ quency，to horizontal pattern select switch，SI．

Vertical sync pulses（very short and negative－going）are directly inte－ grated by R60 and C42，and D1 pro－ vides a discharge path．Emitter－ follower Q6 and R61 feed S2，the

VERTICAL PATTERN SELECT switch．
The triangle waves needed to pro－ duce keying waveforms are obtained from PLL circuits IC6，IC7，and IC8 for horizontal，and IC9，IC10，and IC1I for vertical．Only the horizontal circuitry will be discussed，as the two are similar except for component val－ ues，and their operation is identical．
Horizontal sync is fed through C26 to an LM565 PLL，which is biased by R32 and R33，and supply bypassed by C27 and C30 for the $\pm 5 \mathrm{~V}$ lines． C28 is a loop filter capacitor and C29 suppresses spurious responses．The VCO frequency at pin 8 is nominally 126 kHz （ 480 Hz for the vertical cir－ cuit）．It is set by R34，R35，and C31． The VCO output at pin 4 of IC6 is fed to the pin－8 input of IC7，a 74 C 93 four－stage counter．Only three stages


FIG. 5-THERE ARE FOUR KEYING CIRCUITS; two for horizontal and two for vertical.
are used to get a divide-by-8. The divide-by-8 output (IC7 pin 12) is fed back to IC6 pin 5, the phase detector input. Therefore, under lock conditions, the VCO frequency at pin 9 will be $126 \mathrm{kHz}(8 \times 15.74)$ and will be a triangle wave. IC8 is a buffer amplifier and delivers the triangle wave to S1.

Potentiometer R49 is a mixer control that taps any combination of two
out of the four available waveforms ( $\mathrm{V}, 8 \mathrm{~V}, \mathrm{H}$, and 8 H ). The resultant proportion can be varied to achieve various key patterns. The resulting waveforms are fed to comparator ICl 3 via R50.

IC13 is biased to a threshold by a DC voltage from S3 and voltage divider R46-RR48, or by a slowly varying DC voltage from pin 6 of IC12, as selected by S3. The output of IC13
feeds Q5 via R52 and R53. The output Q5 is a square wave whose duty cycle depends on the signals for S3 and R49. It is used to drive the keying switches in the video mixer circuit.

We'll continue next month with further descriptions of the keying circuits. Then we'll move on to construction details and present printedcircuit patterns, troubleshooting information, and more.

R-E


IF you design your own projects， you＇ve probably waded through a sea of resistors and capacitors，looking for one that makes a circuit work；if not，you＇re lucky．Many professionals use resistor or capacitor decade boxes instead．Suppose the problem is an op－amp feedback resistor，but you＇re not sure．You can substitute the de－ cade box into the circuit．By setting different values，you can monitor per－ formance for the right value．Most resistor versions cost about $\$ 100$ ，and capacitive versions about $\$ 200$ ．Ours costs a fraction of that，and can either replace resistors or capacitors，or let you create a series or parallel RC net－ work．

## Resistor substitution

Figure 1 shows the decade box schematic．Note that rotary switches S1－S6 are in series，with the pole of each connected to the first position of the next．As they＇re rotated over posi－ tions $0-10$ ，an additional resistor goes in series．At position 10，the total is the sum of all resistors connected，and zero at position 0 ．Each switch is an
increasing power of 10 ，hence the term＂decade box＂．So，S1－S6 cover 100 ohms（ten 10 －ohm resistors）， 1 K （ten 100 －ohm resistors）， $10 \mathrm{~K}, 100 \mathrm{~K}, 1$ Megohms，and 10 Megohms；a total of 11.1111 Megohms．

Any value can be selected from 10 ohms to 11.1111 Megohms，with a minimum step of 10 ohms．If you＇d like to have 1 －ohm steps，use 1 －ohm resistors for $\mathrm{S} 1,10$－ohm resistors for S2， 100 －ohm resistors for S3，etc．，up to 100 K resistors for S 6 ，for a total of 1．11111 Megohms in 1 －ohm incre－ ments．All resistors must be $1 \%$ toler－ ance，and fuse Fl provides current protection．The worst case in terms of power dissipation occurs with a single $1 / 4$－watt 10 －ohm resistor，shown in Fig． 2．If more than one resistor is used， power－handling capability increases by 250 mW times the number of se－ ries resistors，so five $1 / 4$－watt versions will handle 1.25 watts．

## Capacitor substitution

The capacitor section of the RC decade box connects all selected ca－ pacitors in parallel，since capacitors in parallel add in value．The ranges of
switches S7－S12 decrease in order of magnitude by a factor of 10 ，as the switch number increases；the total range is $100 \mu \mathrm{~F}-10 \mathrm{pF}$ ．An open termi－ nal on each switch（position 0 ）pro－ vides a way to eliminate the capacitor for that switch from the parallel com－ bination，so that a parallel combina－ tion of up to six capacitors can be selected．

Suppose that an LC tank oscillator has a known resonant frequency with a $0.022 \mu \mathrm{~F}$ capacitor in place．Since the resonant frequency of an LC tank is：$f=1 / 2 \pi \sqrt{L C}$ ，then $f$ is inversely proportional to the square root of both L and C ．If you set S 9 to $0.022 \mu \mathrm{~F}$ and turn S10 to $0.0015 \mu$ F，the total capac－ itance is $0.0235 \mu \mathrm{~F}$ ，which isn＇t a sufficient difference to cause a change in frequency．Turning S10 to 0.0022 $\mu \mathrm{F}$ gives a total capacitance of 0.0242 $\mu \mathrm{F}$ ，which is sufficient to decreases the oscillator frequency．

Thus，the upper capacitance value the oscillator can tolerate and which is within the resolution of the decade box to provide is $0.0235 \mu \mathrm{~F}, 5 \%$ above $0.022 \mu \mathrm{~F}$ ．To find the lower capacitance limit，set S9 to the 0.015


FIG. 1-THE CENTER TERMINAL OF A ROTARY SWITCH is called the pole, and the outside nins are called terminals or positions. The box uses Sinale-Pole 12-Position


FIG．2－CURRENT VS VOLTAGE CURVE for $1 / 4$－watt resistor dissipating 250 mW ．
$\mu \mathrm{F}$ ，and decrease S10 now，instead of increasing it as before．Individual ca－ pacitor tolerances determine the ac－ curacy of the capacitive section，just like for the resistive section．The pro－ totype capacitors were selected using a capacitance meter；use only 5－10\％ tolerance or better．

If you can＇t find a specific value， combine two or three capacitors in parallel until you get close enough to the right value．You should stay away from ceramic disks．Many catalogs list ceramic disks at $10 \%$ tolerance， which isn＇t really bad，or even $20 \%$ or $+80 \%--20 \%$ of rated value．If you don＇t use a capacitance meter，you＇ll never be sure you＇re using the right values．The best are silver mica，poly－ propelyne，metallized polyester，or military ceramic；all have $5 \%$ toler－ ance，and some $2 \%$ or better．

Finding 2．2－100 $\mu \mathrm{F}$ nonpolarized electrolytics can be somewhat diffi－ cult．Since you may not be able to
guarantee that one terminal on the decade box will always be positive and the other always negative，you need to use them in order to prevent the possibility of damage．If you can＇t
find them，make your own from polar－ ized versions；Fig． 3 shows how．The diodes you use depend on the power you want the decade box to be able to handle；for small－signal，you should use something like a 1 N 4148 ；for higher power，you should use a 1N4001．Electrolytics have poor toler－ ances， $50 \%$ variation being common， so be careful．Those used in the pro－ totype were within $10 \%$ ．

## Filter networks

In addition to variable resistance or capacitance values，our decade box can configure RC networks using


FIG．3－CREATE A NONPOLARIZED ca－ pacitor from two polarized types，using 1 N4148 diodes for small－signal purposes， and 1N4001 rectifiers for higher power．


FIG．4－THE VARIOUS CONFIGURATIONS are set using S13：（a）resistor only and（b） capacitor only（both in position R／C）；（c）series RC（position SER）；（d）parallel RC（position PAR）；（e）Low－Pass Filter（position LPF）；and（f）High－Pass Filter（position HPF）．The terminal numbers listed are those of binding－posts BP1－BP6．

## TABLE 1－DECABOX TERMINAL CONNECTIONS

| Configuration | S13 Position | IN／GND | OUT／GND |
| :--- | :--- | :--- | :--- |
| Resistance | R／C | IN：BP1 | OUT：BP2 |
| Capacitance | R／C | IN：BP5 | OUT：BP6 |
| Series RC | SER | IN：BP1 | OUT：BP6 |
| Parallel RC | PAR | IN：BP1 | OUT：BP6 |
| Low Pass Filter <br> （Integrator） | LPF | IN：BP1 <br> GND：BP3 | OUT：BP6 <br> GND：BP4 |
| High Pass Filter <br> （Differentiator） | HPF | IN：BP6 <br> GND：BP3 | OUT：BP1 <br> GND：BP4 |

S13，as in shown Fig．4．The listing of which terminals correspond to what function appears in Table 1．The dif－ ferent filter functions are as follows： －Position R／C（Fig．4－a）is pure resis－ tance or capacitance mode．The resis－ tance is between binding－posts BPI and BP2，the capacitance between binding－posts 5 and 6 ．
－Position SER（Fig．4－b）selects a se－ ries RC network between BP1 and BP6．
－Position Par（Fig．4－c）selects a par－ allel RC network between BPI and BP6．

## PARTS LIST

| All resistors are $1 / 4$-watt, $1 \%$. | C17-0.22 $\mu \mathrm{F}$ |
| :---: | :---: |
| R1-R10-10 ohm | C18-0.15 $\mu \mathrm{F}$ |
| R11-R20-100 ohm | $\mathrm{C} 19-0.1 \mu \mathrm{~F}$ |
| R21-R30-1000 ohm | C20-0.082 $\mu \mathrm{F}$ |
| R31-R40-10,000 ohm | C21-0.068 $\mu \mathrm{F}$ |
| R41-R50-100,000 ohm | C22-0.056 $\mu \mathrm{F}$ |
| R51-R60-1 megohms | $\mathrm{C} 23-0.047 \mu \mathrm{~F}$ |
| Capacitors, nonpolarized electrolytics, $10 \%$. | $\mathrm{C} 24-0.039 \mu \mathrm{~F}$ |
| C1- $100 \mathrm{\mu F}$ | C26-0.022 $\mu \mathrm{F}$ |
| C2-47 $\mu \mathrm{F}$ | $\mathrm{C} 27-0.015 \mu \mathrm{~F}$ |
| C3-33 $\mu \mathrm{F}$ | $\mathrm{C} 28-0.01 \mu \mathrm{~F}$ |
| C4-22 $\mu \mathrm{F}$ | C29-0.0082 $\mu \mathrm{F}$ |
| C5-10 $\mu \mathrm{F}$ | C30-0.0068 $\mu \mathrm{F}$ |
| C6-6.8 $\mu \mathrm{F}$ | C31-0.0056 $\mu \mathrm{F}$ |
| C7-4.7 $\mu \mathrm{F}$ | C32-0.0047 $\mu \mathrm{F}$ |
| C8-3.3 $\mu \mathrm{F}$ | C33-0.0039 $\mu \mathrm{F}$ |
| C9-2.2 $\mu \mathrm{F}$ | C34-0.0033 $\mu \mathrm{F}$ |
| Capacitors; military ceramic, 5\% | C35-0.0022 $\mu \mathrm{F}$ |
| C10-1 $\mu \mathrm{F}$ | C36-0.0015 $\mu \mathrm{F}$ |
| C11-0.82 $\mu \mathrm{F}$ | C37-1000 pF |
| C12-0.68 $\mu \mathrm{F}$ | C38-820 pF |
| $\mathrm{C} 13-0.56 \mu \mathrm{~F}$ | C39-680 pF |
| C14-0.47 $\mu \mathrm{F}$ | C40-560 pF |
| C15-0.39 $\mu \mathrm{F}$ | C41-470 pF |
| C16-0.33 $\mu \mathrm{F}$ | C42-390 pF |

C43-330 pF
C44-220 pF
C45-150 pF
C46-100 pF
C47-82 pF
C48-68 pF
C49-56 pF
C50-47 pF
C51-39 pF
C52- 33 pF
C53-22 pF
C54-15 pF
C55-10 pF
Other components:
S1-S12-SP12P rotary switch, Radio Shack 275-1385
S13-2P6P rotary switch, Radio Shack 275-1386
BP1-BP6-nylon binding posts, Radio Shack 274-662
F1-125 mA fuse
Miscellaneous: Panel-mount fuse holder (Radio Shack 270-362), undrilled case (GC Electronics B-00210BG-BR), knobs (Radio Shack 274-416), 20-22-gauge solid hookup wire.
Notes: A complete kit of parts with all resistors, capacitors, switches, binding posts, fuse holder, hookup wire, case, and knobs is available from Tristat Electronics, 66A Brockington Cres, Nepean, Ontario Canada, K2C 5L1. Please specify the range of resistors and the wattage rating desired, whether $1 / 4-, 1 / 2-$, or 1 watt versions. Kits are $\$ 110.00$ with $1 / 4$-watt resistors, $\$ 120.00$ with $1 / 2$-watt resistors, and $\$ 130.00$ with 1 -watt resistors, with an additional $\$ 7.00$ sor shipping/handling. US funds, please.

- Position LPF (Fig. 4- $d$ ) selects an RC Low-Pass Filter (LPF) or integrator, with input between BP1 (signal) and BP3 (ground), and output between BP6 (signal) and BP4 (ground).
- Position hPF (Fig. 4-e) creates an RC High-Pass Filter (HPF) or differentiator, with input between BP6 (signal) and BP3 (ground), and output between BP1 (signal) and BP4 (ground).


## Construction

Keep wiring and component leads as short as possible. Long wires only continued on page 79

THERE IS NOTHING MORE FRUSTRATING than not knowing where you are going. Consider ancient mariners, nervously navigating mysterious waters, unsure of what lay ahead in their travels. They soon learned to read the heavens and were eventually assisted by the mysterious powers of the navigational compass. Now consider the modern mobile robot, unsure of where it is going, anxiously prodding with tactile sensors and acoustic ranging equipment. It, too, is a little relieved by the information contained in its compass system. All of us have probably experienced the utility of a delicately balanced magnetic needle, carefully suspended on a cork floating in water-a most typical compass ex-
periment from our grammar school days.

Of course modern technology has overshadowed our first experience with the compass. The compass design met a major milestone when the gyro-stabilized remote-indicating compass was introduced during World War II. Suddenly, navigation was automated, freeing the pilot from routine maneuvering. But modern technology has further improved on that massive electro-mechanical device, and now there are new, affordable alternatives for your next robotic project.

We introduce our Digi-Compass project. Actually it's a Radio Shack electronic flux-gate compass, intend-
ed for automobile use, with added circuitry that provides it with an output that can be fed directly into a personal computer. That makes it suitable for applications such as a computer-controlled model airplane, an automobile navigation assistant, or a video camera that intelligently films your journey.

## Magnetohydrodynamics

The iron-nickel core of our planet generates a weak magnetic field. The phenomenon is due to a large moving and highly conductive liquid mass in Earth's core. The study of magnetohydrodynamics (MHD) suggests that by applying an electrical current under those conditions, a magnetic


Is your house rotating... what about your computer?
field is produced (conversely, applying a magnetic field will produce an electrical current). The magnetic field is what causes compasses to point North.

It should be noted that magnetic North is somewhat different than true North (due to what's called magnetic declination), and it may even wander over time. It is also dependent on your geographical location. You can determine the difference between magnetic North and true North by consulting a US Geological Survey (USGS) topographical map. True declination is computed as:
(Map-indicated declination + (annual drift rate $\times$ (current date mappublish date)))

There is also a magnetic inclination, which is the vertical component of Earth's magnetic field. Compass accuracy can be severely affected by its horizontal position, so it is important to keep your compass as level as possible.

## Flux-gate magnetometer

There are a number of different methods used in modern solid-state compasses, but one of the most practical is the flux-gate magnetometer. Although the difficulties in building such a device have eliminated by integrating an off-the-shelf flux-gate automotive compass into the DigiCompass, we will discuss the theory behind the device.

Many magnetic materials exhibit linear magnetization up to a certain flux level. At that point they saturate and lose their magnetic properties.


FIG. 1-A TYPICAL FLUX-GATE magnetometer is constructed by wrapping control, sine, and cosine windings on a toroidial core.

Unsaturated magnetic material will pull in magnetic flux lines, whereas saturated material will not (it completely ignores magnetic fields). So, if you gate Earth's magnetic fields into and out of saturation, they will alternately be concentrated and ignored. If you place a sense winding near your magnetic material, you can measure the strength of Earth's fields entering or leaving the material. The magnitude of the signal is proportional to the Earth's field strength along the axis that has been sensed.

As shown in Fig. 1, a typical fluxgate magnetometer is constructed by carefully wrapping control, sine, and cosine windings on a toroidial core (a donut-shaped core made of iron particles). The sine and cosine windings give us quadrature outputs, which are analog outputs that are separated by 90 degrees. The toroidial core must be carefully chosen for the proper


FIG. 2-INSIDE THE FLUX-GATE COMPASS, the sine and cosine voltage outputs are used to steer an air-core resolver.
"square" saturation curve. The combination of materials and winding direction prevent the drive current that is induced into the saturation-control winding from being picked up by the sense windings. External circuitry also protects against that condition, which would cause measurement errors. Extra windings and circuitry can be added to minimize magnetic in-clination-bulky gyro mechanisms contain a similar feature.

The two quadrature signals pick up magnetic pulses that are related to the sine and cosine of the surrounding magnetic fields. External circuitry switches the control winding on and off at a low frequency, and the resulting ratios of the integrated sine and cosine output voltages provide the data necessary to interpret direction.

Inside the flux-gate compass, the sine and cosine voltage outputs are used to steer an air-core resolver (see Fig. 2). The resolver consists of a pointer and magnet, both attached to a freely rotating axle. Surrounding the magnet are two coils oriented at right angles with one another. The magnet will align itself with the vector sum of the two magnetic fields generated by the coils, which is a direct product of the currents applied to them. Therefore, by varying both the polarity and magnitude of the coil voltages, the axle assembly can be made to rotate a full 360 degrees.

The compass was intended to be mounted in a environment with some vibration (car, boat, etc.) to aid the movement, as it tends to stick. While sitting on your workbench, the compass may have to be tapped occasionally while moving the sensor. Fortunately, our digital interface ignores the position of the electro-mechanical movement, so it does not suffer from that mechanical problem.

## Digi-compass interface

Because the Digi-Compass must have as universal a computer interface as possible, it is designed to be used with an IBM PC or compatible, and communication to the compass occurs through the standard LPT1, LPT2, or LPT3 printer ports. The software is provided as a learning tool, and it would not be difficult to adapt the Digi-Compass to any computer that has four available I/O lines. The two programs available for the Digi-Compass provide both a graphic display of compass direction as well


FIG．3－SCHEMATIC OF THE DIGITAL－COMPASS INTERFACE．Two signals taken from the compass（ $\cos$ and sin）are use to generate direction－related data，which is then fed into a computer．
as a simple text－only display of direc－ tional degrees（from 0 to 360）．

The interface circuitry used to monitor the compass＇s output is rather simple．All that is required is an Ana－ log－to－Digital Converter（ADC）for each compass output．To keep the cost down，only one eight－bit ADC is used，and it is multiplexed between the two outputs．The eight－bit resolu－ tion of the ADC is adequate for the chosen off－the－shelf compass，and it provides more than two degrees of resolution．In order to use a standard IBM－compatible printer port with its limited I／O lines，a serial ADC that needs only four I／O lines was used （twice as many would be required on a typical eight－bit ADC）．

As shown by the interface sche－ matic in Fig．3，the printer port is connected to the Digi－Compass inter－ face circuitry by four opto－couplers． They provide some isolation between the computer and the compass but， most significantly，provide a high de－ gree of noise immunity on long cable distances，which can typically exceed 25 feet．

The cos／sin control line is used to switch between the sine $(\mathrm{Y})$ and the cosine（X）compass output voltages． When the control line is high，the cosine voltages are available to the ADC ，and when it is low the sine voltages are available．

With $\cos / \sin$ high（cosine mode）， the analog switch ICl－c is on and ICl－ a is off．Op－amp IC2－a is a used as an inverter－a somewhat abstract use for the device．The cosine voltage from the compass is attenuated by R8 and R10 before being passed by IC1－a．It is important to limit the compass volt－ ages to less than 5 －volts DC，or lin－ earity will suffer．When $\cos / \sin$ is low （sine mode），ICl－c is off and ICl－a is on，and attenuation is provided by R12 and R13．

Gain control over the switched sig－ nal is provided by IC2－b before it is passed to IC3（the TLC548 ADC）， and it sets the minimum voltage ap－ plied to IC3．However，IC3 could be damaged if the analog input voltage exceeds $\mathrm{V}_{\mathrm{CC}}+0.3$ volts DC ，but by using 6.8 －volts DC to power the op－ amp we have avoided the condition．

The LM324 op－amp＇s output can swing only to $\mathrm{V}_{\mathrm{DD}}-1.5$－volts DC ，so as long as $V_{D D}$ remains at or below 6.8 volts，no trouble will arise．The LM324 output can also go as low as 0 volts，a must for extending the dy－ namic range of the input．Be fore－ warned；other op－amps will behave differently，so be sure to observe that requirement．

As mentioned before，the ADC is a serial device．That means that the data，which is in single－bit form，is presented to the host computer over a series of host－provided clock cycles． It is up to the host to repack the data bits into byte form，a process that is performed in software．There are con－ siderable hardware advantages to using that type of device，but such ADC＇s are not useful in high－speed applications due to the overhead in handling their data output．

The ADC（IC3）requires two refer－ ence voltages，a clock，and a select line．The two reference－voltage inputs set the analog input thresholds that result in minimum and maximum dig－ ital outputs（ 0 to 255 decimal）．As we will see during calibration，R17 and R18 are adjusted to set those limits．


## Build Your Electronics Skills-Join Now!




FIG. 4-THE RS-232 MODULAR JACK ADAPTER is wired as shown here. The capacitor will fit inside of the adapter.

The host then scales the digital numbers into meaningful units such as "volts," but that doesn't involve the Digi-Compass.
Conversion of the input voltage is initiated when the ADC's active-low cs line (chip select) goes low. The ADC then waits for two rising edges and then one falling edge of the CLK line before recognizing the cs condition (the delay debounces the cs input).

The most-significant bit (D7) then appears on the ADC's data output line. The next seven clock pulses shift out the remaining bits, highest to lowest. The computer controls the clock and select line through one of the LPT printer ports, as we mentioned previously.
It is important to note that the data shifted out represents the voltage that was latched during the previous conversion. On the fourth falling edge of the clock the ADC samples the input voltage, which is not available until the next acquisition. That is not a problem if you continuously access the ADC, but in an input multiplexing mode such as that used in the DigiCompass, you must always read the ADC twice, throwing out the first measurement.

In ideal applications, the TLC548 can provide conversions in less than 25 microseconds. However, in this project, acquisition is deliberately much longer due to limited bandwidth of the opto-couplers.

## Construction

The Digi-Compass interface is suitable for perfboard construction using point-to-point wiring techniques. The prototype is mounted in a plastic enclosure (metal could affect the fluxgate sensor), which is attached to the bottom of the compass and serves as a base. If you mount the interface separately from the compass, use shielded wiring and keep the cable as short as possible.

If you intend to operate the interface board more than ten feet from your computer, you should mount IC5 and R20 at the computer end, perhaps inside of the DB-25's housing. That may not be necessary, depending on the environment the cable will be in.

Be sure to use sockets on the IC's just in case you need to replace one later. The voltage regulator does not need a heatsink, and a 6.8 -volt Zener diode can be used instead of the 6.2volt Zener (D2) and 1N4001 diode (D1) combination shown. Just make sure that you use a 12 -volt DC power supply that can deliver at least 750 mA .

Connecting the interface involves dismantling the compass. Inserting a coin or a masking-taped screwdriver blade into the left and right sides of the bezel's groove and carefully twisting will allow the bezel to pop off. Of course you have just violated the compass's warranty, so be sure that it works correctly before you dismantle it. Remember that you are on your
own once you take the compass apart.
Once inside the compass, find the 8 -pin DIP IC (IC2 in Fig. 2) on the bezel-mounted circuit board marked "JRC3415" or "NJM3415" (R23 is right next to it on the PC board). Pin 7 of that IC is the cos sIG output and pin 1 is the sIN SIG output. Solder a labeled 10 -inch 26AWG wire to each pin, and trim as necessary.

Find the 3-pin power connector at the rear of the horizontal PC board. Solder a 22 AWG wire for +12 -volts DC and one for ground directly to the pins -+12 is the middle pin and ground is the one toward the center of the circuit board (ignore the outer unused pin). You can double check for +12 and ground, as well as continuity in the newly installed power wires by temporarily plugging in the compass's factory cigarette-lighter plug and verifying proper voltages. Now you can remove the cigarette-lighter plug and throw it in your junkbox.

Pass the four new wires out of the compass cabinet through one of the vents on the bottom. Re-assemble the compass, being careful not to crush any wires. Temporarily connect +12 volts to the new power wires, and ver-

## PARTS LIST

All resistors are $1 / 4$-watt, $5 \%$, unless otherwise specified.
R1-R3, R21-150 ohms
R4-R8, R10-R13, R20-1000 ohms
R9, R14-22,000 ohms
R15, R19-10,000 ohms
R22-270 ohms, 1/2 watt, 10\%
R16-R18-10,000 ohms, 15-turn trimmer potentiometer

## Capacitors

C1-C3, C5- $10 \mu \mathrm{~F}$, 16 volts, Tantalum
C4- $100 \mu \mathrm{~F}, 35$ volts, electrolytic
C6- $470 \mu \mathrm{~F}$
Semiconductors
IC1-CD4066 quad switch
IC2-LM324 quad op-amp
IC3-TLC548 serial ADC
IC4-LM7805 5-volt regulator
IC5-IC8-MCT2E opto coupler
Q1-2N2222 NPN transistor
D1-1N4001 1 -amp, 50 -volt diode (see text)
D2-6.2-volt, 1-watt Zener diode (see text)
Other components
J1-DB25 modular-jack adapter
F1-3/4-amp fuse
Miscellaneous: Plastic cabinet (prototype used $4 \times 2^{7 / 16} \times 11 / 16$ inches), 12 VDC 1A power supply, Micronta high-accuracy auto compass, wire, sockets, perfboard, etc.
ify that both the sine and cosine outputs vary from about $1.5-7.5$ volts as you move the sensor in different directions. Do not allow the two outputs to touch each other, power, or ground, and don't be concerned if your compass doesn't quite reach the mentioned voltages; they may be within a volt or two.

The DB-25 connector used for the prototype is actually an RS-232 modular jack adapter; its a male DB-25 connector on one side, and a 6-pin phone jack on the other. The DB- 25 side plugs into your computer, and a 6-pin phone cord plugs into the jack side; the other end of the phone cord is wired to the interface circuitry. The green wire is used for +12 , the yellow wire is ground, and the other four are for COS/SIN, CLK, DATA, and SEL. The prototype's color coding is shown in Fig. 4, but it doesn't matter as long as you connect the proper points in the interface circuitry to the proper pins of the DB- 25 connector. A photograph of the finished adapter is shown in Fig. 5. Don't forget to install the $470 \mu \mathrm{~F}$ capacitor (C6) inside the adapter.

## Software

Software is supplied in both compiled and ASCII text source code forms, and it is available for free as an archive file (COMPASS.ARC) on the REBBS (516) 293-2283. The source code should provide sufficient examples as to the methods used to access and convert the Digi-Compass data. Because of the graphics code in COMPASS.C, you may find the simpler TEXTCOMP.C source much easier to read. The two programs are meant to get you started in developing your own applications.

There is a graphics-based program and one that relies strictly on text output. As shown in Fig. 6, compass.exe produces a likeness of a handheld compass. The program requires an EGA graphics adapter and monitor, or a CGA adapter that can display the CGA high-resolution monochrome mode.

There are some clever features included in COMPASS.EXE. On startup, the program will attempt to automatically choose the printer port by exercising all of the BIOS configured LPT ports. If a properly operating compass is found, the respective printer port is selected. You can skip that feature by including "LPT1," "LPT2," or


FIG. 6-THIS IS WHAT YOUR COMPUTER'S SCREEN will look like when operating the digital compass.
"LPT3" as the only argument to the program. Be sure to input a port name that is installed in your computer, or the program will not execute (appropriate error messages are echoed). Standard command-line syntax is: COMPASS LPTn, where " n " is the printer port desired (1, 2 , or 3 ).

The data display in COMPASS.EXE provides current acquisition information. The X and Y values indicate the digitized cosine and sine values from the compass interface. The "angle" value is the number of degrees from North in the clockwise direction. It is interesting to note that North is both 0 and 360 compass degrees, depending on your heading.

The "mode" value shows when you are in the Digital, Analog or Both mode; it can be changed by pushing the "D," "A," or "B" keys. The digital mode is the default and it plots


FIG. 5-HERE'S WHAT THE INSIDE of the adapter looks like.
the compass needle using geometry based on the X and Y values. It shows compass direction in the form of a pivoting compass needle. The analog mode is capable of displaying both direction and magnitude of Earth's magnetic fields. While in the analog mode, if you rotate the flux-gate sensor off the horizontal plane you will see the compass needle length shrink and grow. The longer the needle length, the greater the magnetic field.

There is considerable loss in accuracy while in the analog mode due to the software method in plotting the needle. The analog mode converts the X and Y values to Cartesian coordinates based on fixed center. The accuracy of the analog mode is only fair at best, but could be improved by optimizing the code. The angle value and the digital mode's compass needle are displayed with accuracy that exceeds the compass's electro-mechanical movement. You can display both the digital and analog needles at the same time while in the Both mode.

The number of data acquisition averages can be changed by pushing the "" keys. When the average is at the minimum value of zero, the $\mathrm{X}, \mathrm{Y}$, and angle values will be somewhat unsteady. The values become increasingly more stable as you move to the maximum of thirty-one, but acquisition time will be very slow. The default of four is fine for most of the applications.
continued on page 82


When servicing CD players, you need a good understanding of CD operation and basic troubleshooting ability.


THE CONTEST BETWEEN COMPACT DISK (CCD) players and phonographs is headed in the same direction as cassettes and 8 -tracks. The quality, versatility, and simplicity of CD's make them ideal for audio. First introduced in 1983, CD growth has been comparable to that for VCR's, and all market indicators point to continued success. Lower prices and availability of disks has sparked a sales boom since 1985. With the large number in use, service shops need repair techniques. This article will examine CD basics, key stages to analyze, and test instruments.

## CD basics

Discs are single-sided, store about 70 minutes of stereo audio, are played from the underside, and are read using laser pickups. Tracks begin near the disc center, and move outward as a program plays. The information is recorded as microscopic surface variations (pits and flats) representing $P$ ulse Code Modulation (PCM) audio, sync, and ID information. Audio is sampled at 44.1 kHz . Each sample undergoes 16 -bit A/D conversion, giving a theoretical 98 dB dynamic range (most manufacturers claim $90-95 \mathrm{~dB}$ ).

A CD player's laser pickup is never in physical contact with the disc, giving extreme accuracy, and no deterioration or mechanical noise as with records. The CD player carries separate stereo channels, but interlaced on a single track changing at fixed time intervals. The CD keeps step with those changes, and maintains high in-

[^3]
## TABLE 1-SENCORE RECOMMENDED CD TEST EQUIPMENT

| Type | Requirements | Sencore Gear | Tests |
| :--- | :--- | :--- | :--- |
| Dual Trace Scope | Bandwidth: DC-60 MHz <br> Sensitivity: 50 mV | SC61 Waveform <br> Analyzer | Clocks, Counters, D/A <br> Converters, Audio, Power <br> Supplies, Laser Diode, PLL's |
| Frequency Counter | Range: 250 MHz <br> Sensitivity: 20 mV | FC71 Frequency <br> Counter <br> SC61 Waveform <br> Analyzer | Clocks, PLL's, Oscillators |



FIG. 1-USE A UNIVERSAL BLOCK DIAGRAM whenever troubleshooting, whether you're working on a CD player, VCR, or TV.
terchannel isolation above 90 dB . The optical pickup is focused on the disc surface by an objective lens, which is part of the pickup assembly.

As a disc is played, the beam follows the track by a servo-operated pickup motor. There are two basic pickup types; in one, the optics are
mounted at the end of a rotating arm that moves from the center of the disc to the edge. In the other, a motordriven slide or sled assembly is used. The output from the low-power laser diode is focused on the disc surface by the objective lens. Reflected light from the surface variations (low for
pits, high for flats) passes through the optics into infrared photodiodes. The photodiode signal is what is then used to reproduce the original audio.

## Tracking

Two error-signal sub-beams are produced by routing the laser through a glass diffraction grating ahead of and behind the main beam. After reflection from the disc, each is routed through the optics to photodetector diodes. The error signal from the two sub-beams is converted into an electrical signal and fed to an error-signal amplifier. If the disc tracking is precise, the error-signal amplifier output is zero. The slightest radial tracking error causes the input differential between the right and left error signals to produce an output, fed to the radialtracking servo. That moves the object lens in order to correct the main-beam position.

## Signal processing

Figure 1 shows a typical CD-player block diagram. The laser is applied to the disc optically, and reflected into photodiode detectors to produce audio, tracking, and focus signals. The continued on page 82


FIG. 1-IN a, AN N-CHANNEL E-MOSFET is shown. The channel must be enhanced with N -type charge carriers to turn the transistor on. The symbol for the EMOSFET (b) shows broken lines between the source and drain, indicating that the transistor is normally off.

CMOS BILATERAL SWITCHES CAN BE REgarded as Single Pole Single Throw (SPST) electronic switches. The toughest thing about bilateral switches is learning how and when to use them. And that's exactly what we're going to show you. Because, even though they function like mechanical switches, the differences between the two are many.

Conventional toggle switches have obvious limitations when it comes to high-speed switching. For example, the metal contacts within a switch tend to bounce for a millisecond or two before making a solid electrical connection, introducing glitches into digital circuits and pops into audio circuits. But don't throw out your mechanical switches just yet. That's because, even with all their problems, they're easy to use, readily available, and cheap.

On the other hand, a bilateral switch can be turned on and off several million times per second, they can pass both analog and digital signals in either direction, they can be controlled by digital-logic IC's, and they introduce no digital glitches or audio pops. When turned on, the CMOS switch behaves almost like a short-circuit (about 90-300 ohms); when turned off, it behaves almost like an open circuit (near-infinite impedance).


FIG. 2-CMOS BILATERAL SWITCH (a) imitates a mechanical on/off switch. When closed, the bilateral switch (b) has a series resistance of 300 - to 1500 -ohms.

Bilateral switches can be as simple as the 4016B and 4066B , which house four SPST switches, and as complex as the 4097B, which houses two sin-gle-pole eight-position switches (similar to an electronic SP8P rotary switch).

## Enhancement MOSFET

Bilateral switches are integrated using Complementary Metal-Oxide Semiconductor (CMOS) technology. Figure $1-a$ shows an enhancement MOSFET (E-MOSFET), which is the type of transistor used in both CMOS digital IC's and bilateral switches.

In the N-channel Enhancement Metal-Oxide Semiconductor $F$ ield-Effect Transistor (E MOSFET), the substrate is made of P type semiconductor with two N-type semiconductor wells; between the wells is the channel, and on top of the channel is a layer of glass $\left(\mathrm{SiO}_{2}\right.$-silicon dioxide) and a metal electrode; that's where the term "metal-oxide semiconductor" comes from. The metal electrode is called the gate, one well is called the source, and the other

It looks like an IC, it's made out of semiconductor, but it works like a mechanical switch!


FIG. 3-IMPROVED CMOS BILATERAL switch (a) has a 90 -ohm series resistance (b).
is called the drain. Here's how it works.

E-MOSFET's are normally off devices. Electrons can not travel from the source to the drain because ordinarily there's no conducting channel between the wells. However, when a positive voltage is applied to the gate (with respect to the source), then a negative electrostatic field is induced into the channel ( P substrate). That's because the metal gate and semiconductor act as a tiny capacitor with the silicon dioxide acting as a dielectric. The induced negative field increases the number of N-type mi-nority-charge carriers in the P-substrate; essentially, turning a P-type semiconductor into an N -type semi-


FIG．4－TO CONTROL A BILATERAL SWITCH，use a single－polarity supply for digital signals（a），and a split－polarity supply for analog signals（b）．


FIG．5－SOME IC＇s FEATURE INTERNAL logic－level converters，so an analog switch is controllable via a single－ended input．
two P－type semiconductor wells． When a negative voltage is applied to the gate（with respect to the source），a positive channel is induced between the source and drain，so the transistor turns on．

When P－channel and N－channel E－ MOSFET transistors are connected back－to－back，they are said to be wired in inverse parallel or comple－ mentary pairs；hence the name CMOS．


FIG．6－A 4－POSITION MULTIPLEXER FEEDS three audio signals through a single data line．At the other end，a demultiplexer re－assigns the audio back into separate lines．


FIG．7－THE 4016B AND 4066B each have four independent＂SPST＂switches．
conductor．Now electrons flow from the source to the drain through the induced channel．

In P－channel Enhancement MOSFET＇s，the substrate is made of N －type semiconductor material with

## Bilateral switches

Figure 2－$a$ shows the inside of a bilateral switch where an N －channel and P－channel MOSFET are wired in inverse parallel（drain－to－source and source－to－drain），and have their gates biased in anti－phase via a pair of in－ verters．When the control signal is at logic－level 0 ，the gate of Q 2 is driven to $\mathrm{V}_{\mathrm{DD}}$ and the gate of Q 1 is driven to $\mathrm{V}_{\mathrm{SS}}$ ；under those conditions both MOSFET＇s are cut off，and an open circuit exists because the FET chan－ nels are not enhanced．When，on the other hand，the control signal is at logic level 1，the gate of Q 2 is driven to $\mathrm{V}_{\mathrm{SS}}$ and the gate of Q 1 is driven to $\mathrm{V}_{\mathrm{DD}}$ ；under those conditions both MOSFET＇s are driven into saturation， and a near short－circuit exists because the FET channels are enhanced by the gate＇s electrostatic field．

Note that when Q1 and Q2 are satu－
rated，signal currents can flow in ei－ ther direction，provided that the signal voltages are within the $\mathrm{V}_{\mathrm{SS}}-$ to $-\mathrm{V}_{\mathrm{DD}}$ limits．The FET＇s source and drain can be used as either an input or out－ put－thus the term bilateral（both di－ rections）switch．In practical circuits， Q1 and Q2 exhibit a finite resistance （ $\mathrm{R}_{\mathrm{ON}}$ ）when saturated，and the equiv－ alent circuit in Fig．2－b shows an $\mathrm{R}_{\mathrm{ON}}$ that varies from 300 to as much as 1500 ohms；that resistance depends on the magnitude of the $\mathrm{V}_{\mathrm{SS}}-\mathrm{to}-\mathrm{V}_{\mathrm{DD}}$ voltage，and on the magnitude and polarity of the actual input signal．

Figure 3－$a$ shows an improved ver－ sion of the CMOS bilateral switch． An additional two FET＇s（Q3－Q4）， which also act as a bilateral switch， are added in series with Q5，with Q1＇s source tied to Q5＇s drain．When the control input goes low，Ql＇s source sees $\mathrm{V}_{\text {SS }}$ ，the Q3－Q4 bilateral switch is off，and the Q1－Q2 bilateral switch is also off．When the control input goes high，Q5 turns off，both bilateral switches Q3－Q4 and Q1－Q2 are en－ hanced（turned on）and，because they are in parallel，the $\mathrm{R}_{\mathrm{ON}}$ resistance is reduced to about 90 ohms．That elimi－ nates the variations in $\mathrm{R}_{\mathrm{ON}}$ ，as shown in the equivalent circuit of Fig．3－b． The only disadvantage of Fig． 3 is that it has a slightly lower leakage resis－ tance than Fig． 2.

## Switch bias

Correctly biasing CMOS bilateral switches requires that you know two


FIG．8－THE 4052B HAS TWO SP4T bilat－ eral rotary switches（a）；its truth table is shown in $b$ ．
things: The voltage polarity of the control logic, and the voltage polarity of the signal to be switched. For example, if the signal is analog, does it swing above and below ground, and if it's a digital signal, does it just go between ground and $\mathrm{V}_{\mathrm{Cc}}$ ? Figure 4 shows two ways of biasing the bilateral switch.

To turn on (close) a bilateral switch, you must connect the control terminal to $\mathrm{V}_{\mathrm{DD}}$. To turn off (open) the same switch, connect the control terminal to $\mathrm{V}_{\text {SS }}$. For switching digital signals, use them with a single-ended supply. Also, $\mathrm{V}_{\mathrm{DD}}$ must be a positive voltage that's equal to or greater than the digital signal voltage, with a maximum of +18 volts. For switching analog signals, a split power supply must be used, so that the signal is held at half the supply voltage, which allows the signal to swing above and below ground. The positive supply rail goes to $\mathrm{V}_{\mathrm{DD}}$, and the negative rail goes to $\mathrm{V}_{\mathrm{SS}}$; both rails must be greater than the peak value of the input signal. Generally, the supply values used for bilateral switches are limited to $\pm 9$ volts.

Note that if a split power supply is used, the control logic must swing to the positive rail to turn the bilateral switch on, and to the negative rail to turn the switch off. That arrangement is inconvenient in many practical applications so, as shown in Fig. 5, some IC's (notably the 4051B to 4053B) have built-in logic-level converters. They allow a digital signal to be used as the on/off controlling logic, while still using a split supply in the circuit to correctly bias analog signals.

## Time sharing

Bilateral switches are often used in multiplexer and demultiplexer circuits. Figure 6 shows the difference between the two types. A multiplexer allows information from a number of separate data lines to be sequentially applied to a single data line. On the other hand, a demultiplexer allows information from a single data line to be distributed to any number of separate
rate audio signals can be multiplexed down a single cable, and then demultiplexed back into the three original audio signals at the other end. The benefit is obvious, in that only one data line is needed to carry numerous signals.


FIG. 9-UNUSED SECTIONS OF THE 4066B must be disabled using any one of connections a through $c$.


FIG. 10-IMPLEMENTATION OF THE FOUR BASIC SWITCHING FUNCTIONS (a through d) using the 4066B.


FIG. 11-BY PARALLELING FOUR SPST SWITCHES, the R $_{\text {ON }}$ resistance can be reduced to only 22.5 ohms.

## Best-known IC's

The best-known CMOS bilateral switches are the quad 4016B and 4066B. Both have four independently accessible SPST bilateral switches, as shown in Fig. 7. The 4016B uses the simple form of chip architecture shown in Fig. 2, and is recommended where low leakage impedance is most important. The 4066B uses the improved chip architecture of Fig. 3, and is recommended where a low $\mathrm{R}_{\mathrm{ON}}$ resistance is most important.

Another well-known IC is the 4052B, which is a multiplexer/demultiplexer featuring built-in logiclevel converters, and three power-supply pins $\left(V_{D D}, V_{S S}\right.$, and $\left.V_{E E}\right)$. Figure 8 shows that IC. It's a dual 4-channel multiplexer/demultiplexer, and can be thought of as a ganged, double-pole, four-throw (DP4T) rotary switch. In practice, the $V_{D D}$ is always taken to the positive rail, and $V_{S S}$ is always grounded.

All digital control signals for chan-


FIG. 12-HERE'S A LATCHING touch switch. Can you figure out how it works?

## 4016B/4066B IC's

A few simple precautions should be taken when using the 4016B and 4066B bilateral switches. Here they are:

1. Input and control signals must never go above $\mathrm{V}_{\mathrm{DD}}$ or below $\mathrm{V}_{\mathrm{SS}}$.
2. Each unused switch must be disabled using one of the techniques shown in Fig. 9.
3. Figure 10 shows how to hook up a 4066B (or 4016B) to implement either SPST, SPDT, DPST, or DPDT switches. Those switching functions can be expanded or combined.


FIG. 13-DIGITAL CONTROL OF RESISTANCE made possible using bilateral switches.


| A | B | C | D | C |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \mathrm{nF} \\ & 2 \mathrm{nF} \\ & 3 \mathrm{nF} \end{aligned}$ |
| $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | 0 0 1 1 | $\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$ | $\begin{aligned} & 4 \mathrm{nF} \\ & 5 \mathrm{nF} \\ & 6 \mathrm{nF} \\ & 7 \mathrm{nF} \end{aligned}$ |
| $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | 0 0 1 1 | 0 1 0 1 | $\begin{array}{r} 8 n F \\ 9 n F \\ 10 n F \\ 11 \mathrm{nF} \end{array}$ |
| 1 1 1 1 | 1 1 1 1 | 0 0 1 1 | 0 1 0 1 | $\begin{aligned} & 12 n F \\ & 13 n F \\ & 14 n F \\ & 15 n F \end{aligned}$ |
| $0=$ OPEN $\quad 1=$ CLOSED |  |  |  |  |

FIG. 14-DIGITAL CONTROL OF CAPACITANCE made possible using bilateral switches.
nel-select, inhibit, and other similar functions, use those two rails as their logic reference. In digital applications, $\mathrm{V}_{\mathrm{EE}}$ is grounded (tied to $\mathrm{V}_{\mathrm{SS}}$ ). In analog applications, $\mathrm{V}_{\mathrm{EE}}$ must be taken to a negative supply rail, usually the negative value of $\mathrm{V}_{\mathrm{DD}}$, and must be limited to 18 -volts peak-topeak. Generally, though, a lower voltage is used.
4. Each 4066B bilateral switch has a typical 90 -ohm R ON resistance. Figure 11 shows how four standard switch elements can be wired in parallel to make a single switch having only a 22.5 -ohm $\mathrm{R}_{\mathrm{ON}}$ resistance.

## Touch switch

Figure 12 shows a self-latching touch switch. The switch current
flows to ground via R3-LED1, and the control pin is tied to the top of R3 via R2. Thus when S1 is briefly touched, the control pin is pulled to the positive rail and the bilateral switch closes. The top of R3 is at supply-line potential and, because the control pin is tied to R3 via R2, the bilateral switch is latched closed. The switch can only be opened again by briefly touching S2, at which point R3 voltage falls to zero. Note that LED1 merely indicates the switch's state, and R1 prevents supply line shorts if S1 and S2 are both touched at the same time.

## Digital control

Bilateral switches are used to digi-tally-control electronic components.


FIG. 15-ALTERNATE WAYS to make a dig-itally-controlled 1st-order low-pass filter.


FIG. 16-OP-AMP GAIN CAN BE DIGITALLY CONTROLLED via the feedback resistor (a), or input-resistor stage (b).

Put Professional Knowledge and a


Add prestige and earning power to your technical career by earning your Associate or Bachelor degree through directed home study.
Grantham College of Engineering awards accredited degrees in

## electronics and computers.

An important part of being prepared to move $u p$ is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways-to learn more and to earn your degree in the process.

Grantham offers two degree pro-grams-one with major emphasis in electronics, the other with major emphasis in computers. Associate and bachelor degrees are awarded in each program, and both programs are available completely by correspondence.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand lessons, with help from your Grantham instructors when you need it.

Write for our free catalog (see address below) or telephone us at (213) 493-4421 (no collect calls) and ask for our "degree catalog."

## Accredited by

the Accrediting Commission of the National Home Study Council

GRANTHAM College of Engineering 10570 Humbolt Street Los Alamitos, CA 90720


FIG. 17-555-TIMER FREQUENCY can be digitally controlled.
shows how to vary the gain from unity to $\times 16$ in sixteen steps, giving a gain sequence of $1,2,3,4, \ldots 16$. Because the $3140 \mathrm{op}-\mathrm{amp}$ uses a split power supply, the 4066B must switch between the negative and positive supply rails. The frequency of a 555 astable oscillator can be varied; that is done by connecting Fig. 13 as shown in Fig. 17.

## Multi-gang potentiometers

Figure 18 is an interesting circuit to


FIG. 18-YOU CAN VARY A MULTI-GANGED POTENTIOMETER from 10 K to 100 K by varying an astable's mark/space ratio.

That means that they can vary, in discrete steps, the effective value of resistance, capacitance, impedance, amplifier gain, oscillator frequencyyou name it.

Figure 13 shows how four switches can make a digitally controlled resistor, which varies in sixteen steps of 10 kilohms each. As long as the four resistors are kept in the ratio 1:2:4:8 ..etc, the number of steps can be increased by adding more resistor/ switch stages. Thus, a six-stage circuit having resistors in the ratio 1:2:4:8:16:32 will give resistance variation in 64 steps. Figure 14 shows how four switches can make a digitally controlled capacitor, which varies in sixteen steps of $0.001 \mu \mathrm{Feach}$. Again, the circuit can be expanded by adding more stages. The bilateral switches can be controlled manually, automatically by logic networks, by digital counters, or even by a microprocessor. Figure 15 shows how to form digitally controlled filter networks.

Op-amp gain can be controlled digitally by connecting Fig. 13 into the feedback or input path. Thus, in Fig. 16-a, the gain is varied from zero to unity in sixteen steps of $1 / 1$ sth each, giving a sequence of $\% / 15,1 / 15,2 / 15 \ldots$ up to $15 / 15$ which is unity. Figure $16-b$
analyze. It shows a synthesized 4gang 10 K -to- 100 K potentiometer that is useful at frequencies up to 15 kHz .

The 555 timer outputs a pulse train with a definite mark-space ratio (M/S ratio). As the pulse width decreases, the CMOS switch allows less of the low-voltage AC to pass through; thus simulating a high resistance. As the pulse width increases, more low-voltage AC goes through the switch per unit time, so the simulated resistance is low. The 555 timer is used to generate a $50-\mathrm{kHz}$ rectangular waveform that has its M/S ratio variable from 11:1 to $1: 11$ via R1, which is used to control the 4066B.
If the timer's $50-\mathrm{kHz}$ switching rate is fast relative to the $15-\mathrm{kHz}$ signal frequency, the average or effective value of each gang resistance can be varied by the M/S-ratio potentiometer R1. Thus, if IC2-a is closed for $90 \%$ and open for $10 \%$ of each cycle (M:S ratio equals $9: 1$ ), the apparent (average) value of the $\mathrm{R}_{\mathrm{A}}$ resistance will be $10 \%$ greater, or equal to 10 kilohms. If the duty cycle is reduced to $50 \%$, the apparent $\mathrm{R}_{\mathrm{A}}$ value will double to 18.2 kilohms. If the duty cycle is further decreased, so that IC2-a is closed for only $10 \%$ of each cycle, the apparent value of $R_{A}$ will increase by a decade to 91 kilohms.

R-E


Understanding relays，part I：Electromechanical versions

HARRY L．TRIETLEY

A RELAY IS AN ELECTROMAGNETIC switch，normally using the magnetic field from a coil to open or close one or more sets of contacts．Like re－ sistors and capacitors，they＇re often taken for granted－until you need one！Then，you suddenly find yourself faced with a bewildering array of sizes，cases，contacts，power ratings， and features．No one version is cor－ rect for all applications，and the wrong one can cause poor perfor－ mance or early failure．Most hob－ byists don＇t use relays very often，and aren＇t aware of features and dif－ ferences，but selecting the right one is no more difficult than selecting a re－ sistor or capacitor．This article exam－ ines relays in great detail，explaining how they work，configurations，and applications．

## Basic switching arrangements

Relay contacts are available in dif－ ferent switch configurations．The configuration of a switch is denoted by the numbers of Poles（＂P＂）and Throws（＂ T ＂）．These can be indicated either by a number，or by the letters ＂S＂（for Single）or＂D＂（for Double）． Some different configurations are thus SPST，SPDT，DPDT，or multi－ pole（3PST，4PDT）versions．A re－ lay＇s coil can either drive a few indi－ vidual contacts，or several sets ganged together．

Figure 1 shows the four basic relay configurations．The version in Figure 1－$a$ is Normally $O$ pen（NO）until the coil closes it，while that of Fig．1－$b$ is Normally Closed（NC）until the coil opens it．Figures 1－c and 1－$d$ use dou－ ble－throw contacts，arranged as
break－before－make in the first case and make－before－break in the second． The versions are referred to as Forms A－D，a relatively standard notation． The number of poles is added in front of the form letter，so the relays shown are 1A，1B，1C，2C，and 1D．Relays can use multiple contact types，like $1 \mathrm{AlB}, 2 \mathrm{~A} 2 \mathrm{C}$ ，etc．Other variations exist，but are all based upon those．

Form C momentarily opens both sets of contacts as the center contact moves from side to side；that prevents both sides of the switch from being shorted．Sometimes a circuit requires that the relay contacts not be left un－ connected，even momentarily，in which case Form D is used．Applica－ tions of Form D include smooth， noise－free switching of current－lim－ ited audio or control－system signals，


FIG. 1-RELAY-CONTACT arrangements are designated as Forms A-D. Form $A$ is normally open until the coil closes it, while Form B is normally closed until the coil opens it. Forms C and D use doublethrow contacts, arranged as break-beforemake (Form C) or make-before-break (Form D).
or avoiding voltage spikes when switching inductive loads (more later). Naturally, Form-D contacts can't switch between two sources when shorting them could result in disaster.

## A variety of styles

Relays switch signals ranging from microwatts of RF to megawatts of power; size can vary as much as construction techniques. The design varies with the application. Probably the most familiar relays are general-purpose and reed versions. Table 1 summarizes the most common types.

Figure 2 shows a typical generalpurpose plug-in relay with socket. This type switches moderate power, 10-30 amperes at 120/240 volts AC. Octal tube-type sockets with circular pins are also available, as well as the flat-blade version shown. Its largest
dimension is about 2 inches, and its dust cover provides a little protection, but the relay isn't sealed. Miniature general-purpose relays are epoxied into rectangular plastic potting shells, and have PC board pins. Typical dimensions are about 1 inch, and their controls can typically switch 1-5 amperes.

Reed relays like those in Fig. 3 can either be open or encapsulated, and are generally PC board-mounted DIP's. Figure 4 shows a single magnetic reed switch relay; very often, there's more than one inside a given model. The magnetic field brings the reeds together, and they're sealed in a glass envelope to protect them from contamination. Reed relays switch very fast ( $500 \mu \mathrm{sec}$ ), compared to $5-30 \mathrm{msec}$ for general-purpose types.

Reed relays are intended for dry contact (as opposed to mercury wetted) and low-power switching. Typical contact ratings are $200-250$ volts, $10-30$ watts of switched power, with low voltage current ratings of $0.5-2$ amps. Reed relays with up to six poles are available. High-voltage models switch up to 1 kilovolt, while mercury reed relays typically switch 100 watts.

Coil voltages from 1-24 volts are available, with operating power demands at a fraction of a watt.
Probably the smallest commonly available models are the TO-5 versions. Some look just like transistors; others are square. The overall diameter or width is about 0.3 inch, with


FIG. 2-MANY GENERAL-PURPOSE relays use sockets, like this Potter and Brumfield unit.


FIG. 3-REED RELAYS come in a variety of packages. They're usually small, PC boardmounted DIP's about 1 inch long.


FIG. 4-AN HERMETICALLY-SEALED reed switch actuated by magnetic coil; the coil's magnetic field brings the reeds together. Reed relays can switch in $500 \mu \mathrm{sec}$, compared to $5-30 \mathrm{msec}$ for general-purpose relays.
wire leads coming out the bottom of a 0.2 -inch diameter circle. The contact specs are more limited than those for reed relays, typically 28 -volts DC or 120 -volts AC at about 1 ampere. Coil power is a fraction of a watt at up to 32- volts DC, and sometimes a little higher. They're hermetically sealed and work from $-40-125^{\circ} \mathrm{C}$. Some are available with built-in drive transistors and/or diode surge suppression.

Larger sealed relays switch up to 5 amperes. Housings include crystalcans and plug-in housings. The her-metically-sealed RF relay with coaxial connectors in Fig. 5 matches the 50 -ohm impedance of most transmission lines at frequencies from 500 $\mathrm{MHz}-2 \mathrm{GHz}$, depending on the model. Contact ratings of 150 watts are typical.

Power-switching relays are larger, almost always use open construction, and are used to switch all power levels up to multi-megawatt levels. Figure 6 shows a typical relay used in a power application like motor control. Overall dimensions of versions switching up to 30 amperes are $2-4$-inches. Typical coil power is about 2 watts DC or 5-10 volt-amperes AC. "Contactors" for switching large motors provide the same function as power
relays, but are specially constructed for heavy-duty switching. The contacts are moved by a solenoid that exerts considerably higher force than is normally used in non-power relay applications, instead of a fixed-core coil.

## Choosing the right contacts

Obviously, low-level relays can't switch power, and, conversely, power relays won't reliably switch low-level signals. Contact choices are shòwn in Table 2. The right contacts are crucial for reliable operation. Power loads have self-cleaning contacts that have a tendency to arc and burn off oxidation or contamination. Low-level "dry" (non-wetted) circuits don't do that, and have to be clean; even a thin layer of contamination can prevent lowlevel signals from being switched.

Dry-circuit contacts use non-oxidizing materials or platings, operate with a wiping action so the contacts slide past each other, and are bifurcated (two branching parts). That means that a lengthwise slot in the middle of the contact splits it into two parts for the sake of electrical redundancy. Low-level bifurcated wiping relay contacts are typically goldplated, or use other precious metals. The contacts in reed or hermetically-
sealed relays don't need corrosion resistance, but are often made of precious metals like rhodium or ruthenium.

Power-switching relays need large contacts actuated with sufficient force to handle high currents and voltage. Arcing must be minimized, and electrical and thermal resistance must be low to minimize heating; button contacts are normally used. High-power versions normally use silver-cadmium oxide; it resists welding, has good arc-extinguishing characteristics, and is well suited for reactive or high-surge current loads, but not for switching voltages under 12 volts. Silver is good for medium-power loads and communication systems, but not under 6 volts. Since silver oxidizes easily, such contacts should


FIG. 5-THIS G.E. CORP. hermeticallysealed relay matches the characteristic RF impedance of a 50 -ohm transmission line over the frequency range $500 \mathrm{MHz}-2$ GHz , and uses coaxial connectors instead of pins. Typical contact ratings are 150 watts.


FIG. 6-POWER RELAYS, switching up to 40 amperes, normally use open construction, for motor control. Overall dimensions of 30 -ampere versions are 2-4inches, and typical coil power is about 2 watts DC or 5-10 volt-amperes AC.


FIG. 7-WHEN SWITCHING inductive loads, surge suppression provides a current decay path when relay contacts open. For DC loads, use a reverse-biased diode as in (a). For AC loads, use an MOV (or resistor) and a capacitor as in (b).


FIG. 8-THIS LATCHING RELAY, the 589R from Potter and Brumfield, flips a mechanical toggle from side to side like a mechanical flip-flop, changing state when the coil is activated by a pulse.
be gold plated (flashed) for storage protection. The gold flash will wear with use, and the contacts then depend on wiping and burn-off for cleanliness in operation.
Silver palladium is less susceptible to oxidation; however, its burn-off resistance and conductivity are inferior to silver. It should be used only for low power, below 60 volts. In reed relays with mercury-wetted contacts, a thin film from a small pool of mercury (not the pool itself) shorts the contacts. The mercury film increases power-switching capacity and decreases contact resistance. One relay
series, for example, is rated at 0.5 amp, 10 -watts DC, and 0.1 ohm, using dry contacts; the mercury-wetted equivalent is rated at 2 amps , $50-$ watts DC, and 0.05 ohm . Contact life is higher as well for mercury versions, although they have to be maintained in particular positions.

## Contact protection

Switching inductive loads creates special problems, since the current
through an inductor can't be instantaneously stopped. If a coil is opened while current flows through it, its magnetic field collapses rapidly, inducing a large voltage, the polarity of which maintains current flow. That's the principle used in automotive ignitions or TV flyback transformers. The voltage can reach the kilovolt range, producing arcing and destroying contacts.
When inductive loads are switch-


FIG. 9-TIME-DELAY RELAYS prolong actuation or dropout. The on-delay (a) turns on during the operating voltage and continues until it's removed. The off-delay (b) turns on when the control goes high, and begins its delay after control goes low. The interval (c) turns on when the operating voltage appears, and off before it ends. The on/off-delay (e) has two delays referenced to the leading/trailing control pulse edges. The repeat cycle's ( $f$ ) second delay depends on the first. The accumulating on-delay ( $g$ ) compares total control pulse duration with a reference. In the interval ( $d$ ) and on-delay ( $h$ ) latches, the control pulse turns off any time.

TABLE 2－CONTACT MATERIAL CHARACTERISTICS

| CONTACT | APPLICATIONS | TYPICAL <br> RATINGS | COMMENTS |
| :--- | :--- | :--- | :--- | | Bifurcated，gold－ |
| :--- |
| plated，or gold |
| overlay |$\quad$| ＂Dry＂and low |
| :--- |
| current． |
| Measurement |
| and signal |
| switching． |$\quad$| 0 to 0．2 A．Rated |
| :--- |
| to 120 VAC，but |
| best for 24 V or |
| less． |$\quad$| Low，steady contact |
| :--- |
| resistance． |



FIG．10－THIS LOW－THERMAL－VOLTAGE reed relay uses silver conductors and pins outside the coil，gold－plated silver contacts，and careful shielding to minimize errors．
ed，surge suppression should be pro－ vided，by providing a current path once contacts open．For DC loads，a reverse－biased diode is often added as in Fig．7－a．When the contacts open， load current will flow until it decays to zero．The diode＇s Peak Inverse Volt－ age（PIV）rating should exceed the supply voltage by at least $50 \%$ ，and it should have a surge－current rating that is greater than the normal load curent．A resistor in series with the diode causes the current to decay more rapidly but will produce a larger voltage transient．

You might initially expect a larger resistance to impede current flow，as a capacitor would in series with a re－
sistor．However，the time constant for an R－C combination is：$\tau_{\text {CAP }}=\mathrm{RC}$ ， whereas for an inductor－resistor com－ bination it＇s：$\tau_{\text {IND }}=L / R$ ．Note that $\tau_{\text {IND }}$ is inversely proportional to $R$ ，so as R increases，$\tau_{\text {IND }}$ decreases．The size of the transient can be easily de－ termined using Ohm＇s Law：
$\mathrm{V}_{\text {PEAK }}=\mathrm{I}_{\text {LOAD }} \times \mathrm{R}_{\text {SERIES }}$.
Figures $7-b$ and $7-c$ show one way to provide surge suppression for an AC load．Fig．7－$b$ uses a Metal－$O$ xide Varistor（MOV）and a capacitor．The breakdown voltage ratings of the MOV and the capacitor must exceed the peak voltage of the AC supply．For $60-\mathrm{Hz}$ power，the peak voltage is
1.414 times the RMS level．You can also omit the MOV and add a resistor in series with the capacitor，as shown in Fig．7－c．

Even without an inductive load， high voltages will tend to arc across the contact as it opens．Once struck， the arc will continue via the ionized air until the voltage is removed．That is why many contacts rated for $120 / 240$ volts AC are limited to only 28 volts DC．As a cure，some larger relays are available with a＂blowout magnet＂at each set of contacts． When properly installed，the magnet－ ic field deflects the arc，just as a CRT＇s electron beam is deflected by magnetic coils，so that its path can＇t extend from one contact to the other． The arc is extinguished as soon as it forms；relays with powered blowout coils also are available．

## Coil types

All relays can be used with DC． General－purpose and power relays are also offered with AC coils．Although some use internal rectifier diodes， most use coils and magnetic struc－ tures designed for AC ．In AC opera－ tion，the relay switching time has to be long enough so that the relay doesn＇t＂buzz＂as the input voltage crosses zero．Most general－purpose and power relays are slow enough to avoid the problem．The coil is an in－ ductor，so its current is out of phase with its voltage In Table 1，typical AC volt－ampere ratings are somewhat higher than the wattages of equivalent DC coils．

## Specialty versions

Latching or impulse relays are me－ chanical flip－flops，changing state when their coils are activated by a momentary pulse．They＇re useful in battery and low－power applications， because they use power only when toggled，and they remember their state during power failures．The two types are the mechanical－toggle and magnetic－reed versions．Figure 8 shows a mechanical－toggle relay；the mechanism is the same as that used in push－on／push－off switches．The coil pulls the pin straight down，toggling the latch to the left．When deactivat－ ing，the pin moves up and rests in the upper right－hand notch．When next actuated，the toggle is pulled to the right．

Two－coil latching relays use one continued on page 76

# Hardware Hacker 

## More on cold fusion

IS COLD FUSION FOR REAL? MOST OF the researchers and most of the labs have loudly proclaimed "no" after all of their initial hasty and misdirected experiments failed. But a very few labs are now more convinced than ever that something really big is coming down.

At any rate, sources very close to the barber of an associate of a usually reliable spokesperson for a key fusion researcher feel that...
(1) Cold fusion is real and is in fact the explanation for both the continuous and "burst modes" of the excess heat production.
(2) The tritium reaction does all of the work, and enough tritium is produced to exactly be able to account for the excess heat.
(3) The ambient air can poison the reaction. Working in a very dry inert argon atmosphere is recommended.
(4) The palladium must be vac-uum-refined and then recast, but not in a carbon mold. Any rework, such as an extrusion, is a not allowed.
(5) While palladium films as thin as 50 angstroms could be used, any impurities at all are a no-no. Platinum impurities as low as 0.01 percent spoil the material.
(6) All bubbles must absolutely get eliminated at the palladium surface. Pressurizing the heavy water can help bunches here.
(7) The deuterium ions must flow through the palladium. One approach might be to use a sintered palladium cylinder having an internal vacuum. Another might involve a three-element cell with an accelerating second anode of some sort.
(8) Operation above 175 degrees will dramatically drop the efficiency. Thus, a heat engine using some non-water fluid, such as ammonia, must be used to extract useful work. Fortunately, those OTEP (Ocean Thermal Electric Power) people have already done all the groundwork for low-temperature differential heat engines.
(9) For a breakdown, excess fusion heat production well beyond $12: 1$ will probably be required, due to the inherently low efficiency of any heat engine forced to work with a low temperature differential. Thus, a little bit of excess heat is useless except possibly as a yuppie ski-boot heater.
(10) Other candidate materials do include zirconium, lanthanium, and titanium, but titanium does seem highly overrated at present.
(11) Yet another reasonably priced source for heavy water is the Canadian Atomic Energy Commission. I do not have their address so far. A free book if you do.

In reality, most of those observations are straight from the horse's whatever. Time will tell us which end of the horse we are dealing with.

## NEED HELP?

Phone or write your Hardware Hacker questions directly to:

Don Lancaster
Synergetics
Box 809
Thatcher, AZ 85552
(602) 428-4073

More on cold fusion
New PostScript video
Linear stepper motors
Stepper driver circuits
Modelmaking resources

## DON LANCASTER

Meanwhile, besides all the original German work from the early 1920's, there is an obscure 1979 Australian patent \#48901/79 on cold fusion.

While I personally feel that the patent appears to involve someone who seems to be a few chips shy of a full board, it sure will be interesting to see how many modern claims will be disallowed because of that apparent prior art.

Oh, yes, you might also want to look at US patents $3,983,882$ and $4,107,008$. Curiouser and curiouser.

On, now, to a popular help-line topic...

## Stepper motors

There have been a lot of helpline requests lately for extra information on stepper motors. A stepper motor differs from an ordinary motor in that it rotates its shaft in a discrete and incremental stepping motion.

A stepper motor is thus ideal for any intermittent or precise motions, such as you would need for the platen feed on a dot matrix or daisywheel printer. Steppers are also useful for any slow-speed application, eliminating the cumbersome gear trains you would need with most ordinary high-speed motors. The steppers are also instantly reversible, and usually have a holding torque that can act as an internal brake. Steppers are handy for variable-speed uses, something that gets extremely tricky to do with most AC motor designs.

One type of stepper motor consists of a toothed magnetic rotor and a toothed iron stator. The


## Plug a Friend into Radio-Electronics this Christmas ... and Save \$11!

This Christmas give an electrifying gift ... plug a friend into Radio-Electronics and brighten his whole new year! Whether electronics is his livelihood or his hobby, your gift will sharpen his focus and illuminate the whole spectrum of electronics throughout the coming year.

Radio-Electronics will keep him informed and up-to-date with new ideas and innovations in all areas of electronic technology ... computers, video, radio, stereo, solid state technology, satellite TV, industrial and medical electronics, communications, robotics, and much, much more.

He'll get great plans and printed circuit patterns for great electronic projects. In just the last year, Radio-Electronics has presented voice scramblers, video switchers, frequency standards, wireless audio links, radiation monitors, function generators, and much more.

In coming issues, Radio-Electronics will present practical, educational, and moneysaving projects like: a helium-neon laser ... a lighting controller $\ldots$ a video timebase corrector ... a video noise processor ... a light-beam communicator ... an antenna amplifier $\ldots$ and many others!

PLUS ... equipment troubleshooting techniques ... circuit design ... reports on new technology and new products equipment test reports ... in-depth coverage on computers, video, audio, shortwave radio $\ldots$ and lots more exciting features and articles.

SAVE \$11 ...OR EVEN \$22 ... For each gift of Radio-Electronics you give this Christmas, you save a full $\$ 11.00$ off the newsstand price. And as an R-E gift donor, you're entitled to start or extend your own subscription at the same Special Holiday Gift Rate - you save an additional \$11.00!

No need to send money ... if you prefer, we'll hold the bill till January, 1989. But you must rush the attached Gift Certificate to us to allow time to process your order and send a handsome gift announcement card, signed with your name, in time for Christmas.

So do it now ... take just a moment to fill in the names of a friend or two and mail the Gift Certificate to us in its attached, postagepaid reply envelope. That's all it takes to plug your friends into a whole year of exciting projects and new ideas in Radio-Electronics!

number of teeth decides the step angle and the number of steps per revolution. In the absence of any electrical input, the rotor will lock to the stator by seeking out paths of minimum magnetic reluctance.

There are normally two groups of windings provided. The " A " winding is active one-third of the distance between teeth, while the " B " winding is active two-thirds of the distance between the teeth.

In typical use, a four-step process is used to advance to the next tooth position. The A winding first gets activated, attracting the toothed rotor one-third of the distance to the next tooth. Then the $B$ winding is activated, attracting to the two-thirds point. Next, the A winding has its current reversed to further repel towards that two thirds point. In the final step, that current in the B winding gets reversed, repelling the rotor to its new and final position.
The speed gets determined by the number of steps applied per second. The direction is set by changing the roles of the $A$ and $B$ windings.

Edmund Scientific
101 E．Glouchester Pike
Barrington，NJ 08007
（609）573－6250
Evergreen Scale Models
12808 NE 125th Way
Kirkland，WA 98034
（206）823－0458

## Fastex

195 Algonquin Road
Des Plaines，IL 60016
（312）299－2222
Fine Scale Modeling
21027 Crossroads Circle
Waukesha，WI 53187
（414）796－8776
Fomeboards
2211 N．Elston Avenue
Chicago，IL 60614
（312）278－9200
W．W．Granger
5959 West Howard St．
Chicago，IL 60648
（312）647－8900
Herbach \＆Rademan
401 East Erie Avenue Philadelphia，PA 19134 （215）426－1700
Hygenic Manufacturing
1245 Home Avenue
Akron， OH 44310
（216）633－8460
Jerryco
601 Linden Place
Evanston，IL 60202
（312）475－8440

K \＆S Engineering
6917 West 59th St．
Chicago，IL 60638
（312）586－8503
Lindsay Publications
PO Box 12
Bradley，IL 60915
（815）468－3668
Machine Design
1100 Superior Avenue
Cleveland，OH 44144
（216）696－7000
McMaster－Carr
Box 54960
Los Angeles，CA 90054
（213）692－5911
Milled Shapes
1701 North 33rd Ave．
Melrose Park，IL 60160
（312）344－1220
Model Railroader
21027 Crossroads Circle
Waukesha，WI 53187
（414）796－8776
New Equipment Digest
1100 Superior Avenue
Cleveland， OH 44114 （216）696－7000
Northeastern Scale Models
PO Box 727
Methuen，MA 01844
（508）688－6019
Nuts and Volts
Box 1111
Placentia，CA 92670
（714）632－7721

## Plastiglide

2701 West El Segundo Blvd．
Hawthorne，CA 90250
（213）777－8108

## Signcraft

1938 Hill Ave．PO Box 06031
Fort Meyers，FL 33906
（813）939－4644
Sinclair \＆Rush
10315 Page Industrial Blvd．
St．Louis，MO 63132
（314）426－4487
Small Parts
6891 NE Third Ave．
Miami，FL 33238
（305）751－0856
Special Shapes
PO Box 487
Romeoville，IL 60441
No listing
Stock Drive Products
55 South Denton Ave．
New Hyde Park，NY 11040
（516）328－0200

## Synergetics

Box 809
Thatcher，AZ 85552
（602）428－4073
US Plastics
1390 Neubrecht Road
Lima，OH 45801
（419）228－2242
oodworker＇s Store
21801 Industrial Blvd．
Rogers，MN 55374
（612）428－2899

## Two linear steppers

Take an ordinary stepper motor， but make it hollow at its center． Then add a threaded shaft through the middle，which gets driven from a nutplate on the stepper ar－ mature．As the stepper is stepped， the nutplate turns，which in turn advances or retards the threaded shaft．

All of which gives you a way to push or pull things in tiny and very accurate increments under com－ puter control．With lots of force over fairly long strokes．

Uses？Animation tables， printed－circuit drills，a numeric－ controlled milling machine，plot－ ters，robotics，valve actuators， electronic engine controls，re－ search projects，point－of－pur－ chase displays，plus dozens of uses previously unthunk of．

Figure 3 shows you the Hurst model SLS linear actuator．It＇s a 12－ watt unit that gives you 25 pounds
of force in 2－mil（ 0.002 inch）incre－ ments，over an 8 －inch actuating length．

While under $\$ 20$ in quantity，sin－ gle evaluation units cost around $\$ 55$ ，unless you can locate a sur－ plus one．That seems rather high， until you take that＂Uh，compared to what？＂factor into account．

On custom order，lead screws up to several feet long can be ob－ tained．Note that there is no the－ oretical limit to the stroke you could get out of one of those，so long as a lead screw that length is available．Maintaining the preci－ sion and avoiding any binding would，of course，get far worse with increasing length．

Figure 4 shows you a smaller Airpax series 92100 unit．They are much smaller and give you a half－ inch maximum stroke，in 2－or 4 － mil steps，having a force slightly over one pound．

The price is around $\$ 25$ each，
but you might be able to find one nearly free at your local junkyard， as some automobiles use them for computerized carburetor idle ad－ justments．Unfortunately，I don＇t know which specific models to send you after．There are also some plain old throttle solenoids that look just about the same，so make sure you are getting a＂real＂ stepper when you make your visit．

You can step them up to 400 steps per second，which means you can travel the half－inch stop－ to－stop distance in something like 0.6 seconds．But you do lose force at the higher stepping rates．

We＇re using that one locally to adjust the teeth on a cotton pick－ ing machine．The stepper acts as sort of a micrometer，advancing until it touches each tooth．The number of steps needed then tells the mechanic how much shim to add．

If you don＇t know anything


FIG. 3-THE HURST SLS LINEAR ACTUATOR is a real "sleeper" for hardware hacking. This easy-to-drive 12-volt, 12-watt unit offers 24 pounds of force in 2-mil ( 0.002 ) increments. What can you do with it that's new and really different?


FIG. 4-THE AIRPAX 92100 is a smaller linear stepper motor having a $1 / 2$-inch stroke. Similar units may be available at a junkyard as throttle idle controllers.
about cotton picking, what we have here is an easy and precise way to eliminate a most tedious and time-consuming job. If the teeth are too close, you destroy the machine. If they are too far away, your yield and your grade goes down.
A third source of linear actuators is Eastern Air Devices, but their military look and their refusal to include pricing in their mailings does not bode well for hackers.

## Stepper drivers

Most of the stepper manufacturers have available driver circuit-
ry for their devices, but those tend to be older hybrids that seem overpriced. Instead, there are several suppliers of single- and doublechip stepper-motor drivers. They include Sprague, SGS, and Motorola.

Figure 5 shows you a circuit for the Sprague UCN-4204B singlechip stepper driver. While I haven't yet been able to check the chip out (stay tuned), it looks like a typical modern circuit with 1.5 amps of drive capability and inter-
nal protection for both overheating and overcurrent. They are well under $\$ 4$ in singles.
To use the circuit, you provide two inputs. The first is the direction input which decides whether your stepper will spin forward or backward. The second is a train of square-wave pulses that sets the speed in the chosen direction.
It is usually best to computer control your stepper driver. As we've seen, an otherwise unused Commodore 64 is ideal for that sort of thing, and their going rate is around $\$ 30$ at a yard sale.

One microcontroller chip that I really like which includes dual low-level stepper drivers on-chip (among lots of other goodies) is the great M50734 by Mitsubishi. That dude cross-assembles beautifully on an Apple Ile or IIgs.

## Three contests

Let's have three contests this month. There will be the usual Incredible Secret Money Machine prizes for the best dozen entries, with an all-expense paid (FOB Thatcher, AZ) tinaja quest for two going to the very best of all.
For the easy contest, just tell me something you would like to do with a linear stepping motor or a linear actuator. Or two or even three. Especially if they have twenty pounds of force in 2-mil increments.


FIG. 5-LOW-COST SINGLE-CHIP stepper-motor drivers are readily available from Motorola, SGS, and Sprague, among others. Here's a popular Sprague driver.

scopes.


- DC to 40 MHz - Dual Channel - CRT Readout
- Cursor Meas
- DC Offset
- Compact Size


DC to 100 MHz - Dual Channel

- CRT Readout
- Sweep Time
- Trigger Lock - 2 mV Sensitivity
$\mathrm{V}-223 \quad 20 \mathrm{MHz}$
$\begin{array}{ll}\mathrm{V} .422 & 40 \mathrm{MHz} \\ \mathrm{V} .423 \mathrm{MHz}\end{array}$
V-660 60 MHz
V-1065 100 MHz
$\mathrm{V}-1100 \mathrm{~A} 100 \mathrm{MHz}$
, Delayed Sweep, DC Offse1, Vert ImV sens, DC Offset Vert Mode Trigger, Ait Mag .., 1 mV sens, Delayed Sweep, DC Offset, Alt Mag D.T., $2 m V$ sens, Delayed Sweep, CRT Readout Q.T., 1 mV sens, Delayed Sweep, CRT Readout, DVM, Counter Q.T., 1 mV sens, Delayed Sweep, CRT Readout, DVM, Counter


## ELENCO PRODUCTS AT DISCOUNT PRICES

## 20MHz Dual Trace Oscilloscope



## \$375 <br> M0-1251

- 6" CRT
- Built in
component tester
- TV Sync


35MHz Dual Trace Oscilloscope


## $\$ 495$

M0-1252

- High luminance $6^{\prime \prime}$ CRT - ImV Sensitivity
- 6KV Acceleration Voltage - 10ns Rise Time
- X-Y Operation • Z Axis
- Delayed Triggering Sweep

Top quality scopes at a very reasonable price. Contains all desired features. Two $1 \mathrm{x}, 10 \mathrm{x}$ probes, diagrams and manual. Two year guarantee.


## ELECTRONIC ENGINEERING

8 volumes, over 2000 pages, including all necessary math and physics. 29 examinations to help you gauge your personal progress. A truly great learning experience.

Prepare now to take advantage of the growing demand for people able to work at the engineering level.

Ask for our brochure giving complete details of content. Use your free information card number, or write us directly. \$99.95, Postage Included. Satisfaction guaranteed or money refunded.
 Rockford, IL 61103

CIRCLE 67 ON FREE INFORMATION CARD


THE MONEY MAKING OPPORTUNITY OF THE 1990'S
IF you are able to work with common small hand tools, and are familiar with basic electronics (i.e. able to use voltmeter, understand DC electronics).
IF you possess average mechanical ability, and have a VCR on which to practice and learn. . . .then we can teach YOU VCR maintenance and repair!
FACT: up to $90 \%$ of ALL VCR malfunctions are due to simple MECHANICAL or ELECTRO-MECHANICAL breakdowns!
FACT: over 77 million VCRs in use today nationwide! Average VCR needs service or repair every 12 to 18 months!
Viejo's 400 PAGE TRAINING MANUAL (over 500 photos and illustrations) and AWARD-WINNING VIDEO TRAINING TAPE reveals the SECRETS of VCR maintenance and repair-"real world" information that is NOT available elsewhere!
Also includes all the info you'll need regarding the BUSINESS-SIDE of running a successful service operation!

FREE INFORMATION
CALL TOLL-FREE 1-800-537-0589
Or write to: Viejo Publications
3540 Wilshire BL. STE 310
Los Angeles, CA 90010 Dept RE

For our intermediate contest, just tell me which makes and models of automobiles use linear stepping actuators as their idle controls.

For the hard contest, nobody talks very much about the electrical and mechanical eficiency of a stepping motor. Why? Could a very large and extremely efficient linear stepping motor be built?

That would dramatically improve solar water-pump design, as the pump stroke and speed could be exactly and continuously matched to both the available input solar power and the well characteristics. Which might enormously simplify and cheapen both the electronic and mechanical designs. Especially for remote and third-world applications.

## Modelmaking resources

In any large electronics company, the model shop is that secret
lair where all of the mockups, mechanical prototypes, breadboards, concept pieces, and one-of-akinds come from. As a hacker, you are your own model shop, so it is super important to know where to go to get all of the non-electronic bits and pieces you'll need to make hacking more hackable. Our new Modelmaking Resources sidebar shows you a few places to go for model info and supplies.

Naturally, you will want to check out your own local resources first. Those should include a good hardware store, a large junkyard, a real hobby shop, and a few electronic surplus houses that do not have a catalog and do not advertise in any national magazines. One regional example around here is the Apache Reclamation and Salvage. Ask any ham radio operator for a complete neighborhood list.

I've also found a local horsetrailer factory to be useful, es-

NAMES AND NUMBERS

Airpax
150 Knotter Drive Cheshire, CT 06410
(203) 271-6000

Brookfield
240 Cushing St.
Stoughton, MA 02072
(617) 344-4310

Burr-Brown
6730 S. Tucson Blvd.
Tucson, AZ 85706
(602) 746-1111

Computer Shopper
5211 South Washington
Titusville, FL 32780
(407) 269-3211

Hayden Switch \& Instrument
1500 Meridan Rd. PO Box 3329
Waterbury, CT 06705
(203) 756-7441

Heath Buyers Club
PO box 217
Benton Harbor, MI 49022
(616) 982-3789

Hurst Manufacturing
Box 326
Princeton, NJ 47670
(812) 385-2564

Linear Technology
1630 Mc Carthy Blvd.
Milpitas, CA 95035
(408) 432-1900

Mitsubishi
1050 East Arques Avenue
Sunnyvale, CA 94086
(408) 730-5900

## Motion Magazine

Box 6430
Orange, CA 92613
(714) 974-0200

## Motorola

5005 E. McDowell Rd.
Phoenix, AZ 85008
(602) 244-6900

PCIM
2472 Eastman Ave. B33
Ventura, CA 93003
(805) 658-0933

Precision Monolithics
1500 Space Park Dr.
Santa Clara, CA 95052
(408) 727-9222

Rohm Corporation
8 Whatney
Irvine, CA 92718
(714) 855-0819

SGS
100 East Bell Rd.
Phoenix, AZ 85022
(602) 867-6959

## Sprague

363 Platinum
Worcester, MA 01605
(508) 795-1300

Superior Electric
383 Middle St.
Bristol, CT 06010
(203) 582-9561

## Tektronix

Box 4600
Beaverton, OR 97076
(800) 426-2200

## MIDI <br> PROJECTS

## MrDI

 ProjectsBP182-MIDI interfacing enables any so equipped instruments, regardless of the manufacturer, to be easily connected together and used as a system with easy computer control of these music systems. Combine a computer and some MIDI instruments and you can have what is virtually a programmable orchestra. To get your copy send $\$ 6.95$ plus $\$ 1.25$ for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.

## LINEAR IC EQUIVALENTS \& PIN CONNECTIONS



BP141-Shows equivalents \& pin connections of a popular user-oriented selection of European, American and Japanese liner IC.'s 320 pages, $8 \times 10$ inches. $\$ 12.50$ Plus $\$ 2.75$ shipping. ELECTRONIC TECHNOLOGY TODAY INC., PO Box 240, Massapequa Park, New York 11762-0240.

## FCC LICENSE PREPARATION

The FCC has revised and updated the commercial license exam. The NEW EXAM covers updated marine and aviation rules and regulations, transistor and digital circuitry. THE GENERAL RADIOTELEPHONE OPERATOR LICENSE - STUDY GUIDE contains vital information. VIDEO
SEMINAR KITS ARE NOW AVAILABLE.
WPT PUBLICATION
979 Young Street, Suite A
Woodburn, Oregon 97071
Phone (503) 981-5159
CIRCLE 177 ON FREE INFORMATION CARD
pecially when it comes to cheaply finding, shearing, and bending any heavier metal. You might want to substitute an air-conditioning outfit, a welder, or even a blacksmith shop here.
At any rate, one resource stands out head and shoulders above all others for hacker modelmaking. That is Small Parts, who stock everything your hardware store never heard of, besides customcutting small pieces of metal and plastic for you. All at fair prices, selling to anyone, with very low minimum orders.
A second major resource would have to be JerryCo, who have a mind-boggling assortment of lowpriced mechanical and electronic surplus stuff. Competitors to JerryCo include Edmund Scientific, BNF Sales, Herbach and Rademan, and C\&H Sales. And don't forget about the many other superb Ra-dio-Electronics advertisers.

The "super hardware stores" that industry shops at include McMaster-Carr and W.W. Granger, both of whom have warehouses in most major cities. I guess I'd have to also include Stock Drive Products here for timing belts, gearing, and such, although their pricing is often on the high side.
While I know of no magazine or trade journal aimed directly at
hacker modelmaking, seven of your "must have" publications include Model Railroader, Fine Scale Modeling, Design News, Machine Design, Nuts and Volts, Signcraft, and the New Equipment Digest. Don't tell NED who told you about all their great free samples each month.

For a wide-ranging assortment of fairly priced books on all aspects of prototyping and modelmaking, Lindsay Publications is a good choice.

For all the materials themselves in smaller sizes, try $K \& S$ for metal sheet, rod, and tubing; the Evergreen folks for custom-cut vinyl; NorthEastern for wood shapes that are precision precut into the magic sizes favored by model railroaders, architects, and doll-house builders; and Milled Shapes for any miniature brass extrusions.

For larger wood stuff, check into The Woodworker's Store, Constantine, or Edlco. Nothing sharpens up a prototype case better than making it from an exotic wood such as Bocote, Wenge, Cocobolo, or Padouk.

It used to be that cardboard was cardboard and posterboard was posterboard. But today, there are dozens of easily worked, sturdy, light, and good-looking high-tech
sheet stocks especially designed for models and mockups. One leading distributor of those materials is Fomeboards.

Several random companies do fall into the "neat stuff" category, making them extremely valuable resources for modelmaking. Some of them include Hygenic for rubber sheeting and tubing; Caplugs or Sinclair and Rush for all sorts of unique closures; Plastiglide and ITW Fastex for unusual plastic items; Bead Chain for themselves; and US Plastics for plastic stock. Other obvious cheap plastic sources are the Lexan glazing sheets from any local glass cutter. If you have any modelmaking favorites of your own, please let us know so we can pass them on.

## New tech literature

A design for a hackable very-low-noise FET amplifier appeared in the June 1989 Review of Scientific Instruments on page 1194. It is claimed to be 100 times better than anything else available. Other sources of low-noise amplifier info include Precision Monolithics, Burr Brown and Linear Technology.
Rohm has a pair of new data books available on all their absolutely outstanding hacker intecontinued on page 97

# Audio UPDATE 

## The sound of CD—Part I



LARRY KLEIN, AUDIO EDITOR

THE ADVENT OF THE DIGITAL COMPACT disc was greeted by the major audio companies as the ultimate achievement of the audio art, the final step in the long and arduous march toward absolute recording fidelity. In their view, the dawn of digital meant that we no longer would be troubled by clicks, pops, hiss, and the other extraneous noises heard with LP's and tapes. Furthermore, wow and flutter and the other playback-speed irregularities inherent in all turntables and tape decks disappeared through the magic of digital processing. Distortion was reduced to the vanishing point, and dynamic range approached that of live music. In short, the sonic millennium had arrived.

Audio old-timers, such as myself, usually assume a wait-and-see attitude when faced with extravagant audio claims. But in the case of the compact disc, the fidelity claims seemed solidly based on accepted and well-understood (by some) digital technology. So it seemed that Audio Utopia was finally within our grasp, right? Wrong! No sooner had compact discs and their players reached the marketplace then the complaints started. We were told that CD recordings sounded shrill, harsh, unmusical, lifeless, or clinical; that they lacked warmth and depth; and, in general, were an insult to the critical ear. If many of the complaints sounded familiar, it was because we had heard them before-used by lovers of tube equipment (vacuuphiles?) to describe transistor amplifiers.

It became clear early on that the
fidelity fundamentalists who published and read such underground magazines as Absolute Sound and Stereophile were not going to support CD. For those golden-eared self-appointed defenders of musical virtue, digital recording and playback was obviously the work of nefarious forces. And their antidigital bias was backed up by a group of recording engineers who had financial and emotional investments in older technologyincluding direct-cut (no tape) disc masters.

## Justified complaints

One can't be a frequent reader of U.S. and British audio publications without quickly becoming aware of their occasionally technically nonsensical views and evaluations. As a result, I've learned to be somewhat cynical about their judgments as to what sounds good, what doesn't, and how it got that way. So, considering the sources, my initial reaction was to disregard all the complaints about CD harshness-until I began to hear it myself!
The more vociferous CD critics claimed that the problem was inherent in the digital format. After all, how could anyone expect anything musical to survive being chopped into millions of digital bits and then reassembled as a series of smoothed-over adjacent square waves? But disregarding the theories advanced by the technically ignorant, exactly what was going wrong?

Several investigators compared some of the harsh-sounding early CD's to LP's cut from the same mas-
ters. In the comparative measurements, the CD's showed broad response peaks of about 2 dB extending from about 2 kHz right up to perhaps the high-frequency limits of the program. The audible effect of that type of response curve is certainly enough to trigger the complaints-but where did it come from? Was it an artifact of CD processing? Ironically, the hump in the CD response occurs because of LP processing!
When preparing an LP master tape, mastering engineers typically program equalize to "precompensate" for the normal highfrequency losses that occur in the disc-mastering and playback process. But when the same equalized master tape is used for the compact disc-which does not suffer equivalent high-frequency losses-the inappropriate highfrequency boosts are heard during playback as harshness.
It may seem hard to believe that incompetent audio engineering resulted in the release of so many harsh-sounding CD's, particularly since the ultimate success of the new CD format was to a large degree dependent on its superior sound quality. But the explanation seems reasonable to me, considering my experience over the years with lousy sounding LP's from major record companies when their engineers were not contending with a new technology.

In any case, proving that the spurious boost is the cause of the harsh, gritty quality troubling early CD's is a fairly simple task. All that is needed is an octave-band equalizer to pull down the response
where incompetent engineering has boosted it．When that＇s done， CD＇s and LP＇s sound very much the same，except that CD＇s lack the spurious LP noises－and may not have the desired level of stereo ambiance．

## The difference signal

The moment－to－moment dif－ ferences between the right and left channels of the stereo signal provide the sense of space and am－ biance around the recorded per－ formance．By manipulating the $L-R$（Left minus Right）difference signal equipment，designers can artificially widen the sonic sound stage，create enhanced ambiance， or even produce a rear ambiance channel．It has usually been as－ sumed that the recording process doesn＇t appreciably affect the L－R signal aside from the slight（and inaudible）loss of separation re－ sulting from the transfer from mas－ ter tape to disc or cassette．

Why，then，should listeners comparing a CD to an LP some－ times report a loss of ambiance and＂air＂surrounding the per－ formers？The most likely explana－ tion is that the cutter head in the mastering studio and／or the pho－ no cartridge in the listener＇s rec－ ord player exaggerates the vertical modulation in the record groove that carries the L－R information． Thus，paradoxically，the slightly lower level（ -1 dB or so）of dif－ ference signal on the CD corre－ sponds more accurately to the master tape than does the LP．How does cassette or open－reel tape enter into the picture？Perhaps the tape＇s wider separation audibly compensates for the lack of ver－ tical modulation enhancement．
Bob Carver，who supplied me with some of the above data，has built into several of his Carver Cor－ poration CD players a＂Digital Time Lens＂that regenerates the lost L－R signal and simultaneously equalizes the unwanted high－fre－ quency boost out of harsh CD＇s． For CD＇s without problems，the circuit can be switched out．
Now that we＇ve resolved the question（Ha！）of the sound of compact discs，next month we will examine the sound of CD players． Do they all sound essentially alike， as many critics claim？

R－E

THE MODEL WTT－20 IS ONLY THE SIZE OF
A DIME，yet transmits both sides of a tele－ phone conversation to any FM radio with crystal clarity．Telephone line powered－never needs a battery！Up to $1 / 4$ mile range．Adjusta－ ble from $70-130 \mathrm{MHZ}$ ．Complete kit \＄29．95 $+\$ 1.50 \mathrm{~S}+\mathrm{H}$ ．Free Shipping on 2 or more！ COD add \＄4．Call or send VISA，MC，MO． DECO INDUSTRIES，Box 607，Bedford Hills，NY 10507．（914）232－3878．

CIRCLE 127 ON FREE INFORMATION CARD


CABLE TV CONVERTERS AND DE－ SCRAMBLERS SB－3 $\$ 79.00$ TRI－BI $\$ 95.00$ MLD－$\$ 85.00$ M $35 B$ B 89.00 JRX－DIC $\$ 129.00$ Special combos available．We ship COD． Quantity discounts．Call for pricing on other products．Dealers wanted．FREE CATALOG． We stand behind our products where others fail．One year warranty．ACE PRODUCTS， P．O．Box 582，Saco，ME 04072 （207） 967－0726．
CIRCLE 75 ON FREE INFORMATION CARD


SIMPLY SNAP THE WAT－50 MINIATURE FM TRANSMITTER on top of a 9 v battery and hear every sound in an entire house up to 1 mile away！Adjustable from 70－130 MHZ．Use with any FM radio．Complete kit $\$ 29.95+$ $\$ 1.50 \mathrm{~S}+\mathrm{H}$ ．Free shipping on 2 or more！COD add \＄4．Call or send VISA，MC，MO．DECO INDUSTRIES，Box 607，Bedford Hills，NY 10507．（914）232－3878．
CIRCLE 127 ON FREE INFORMATION CARD


FREE CATALOG OF HARD－TO－FIND TOOLS is packed with more than 2000 quality items．Your single source for precision tools used by electronic technicians，engi－ neers，instrument mechanics，schools，labo－ ratories and government agencies．Also contains Jensen＇s line of more than 40 tool kits．Send for your free copy today！JENSEN TOOLS INC．， 7815 46th St．，Phoenix，AZ 85044．（602）968－6231．
CIRCLE 115 ON FREE INFORMATION CARD


ZENITH SSAVI UHF or VHF for U．S．and abroad，reconditioned，from \＄179．Final closeout，on cable TV equipment including Oak N－12s，HLD－1200s，Sylvania 4040s， starbases，converters \＆more；call for list． RADAR speed guns \＆systems for car，snow－ mobile \＆boat racing，skiing，etc．Professional X \＆K band models $\$ 279$ and up．Cash \＆ quantity discounts．AIS SATELLITE，INC．， 106 N．7th St．／R，Perkasie，PA 18944．Or－ ders \＆catalogs：1－800－AIS－2001；tech． info：（215）453－1400．
CIRCLE 81 ON FREE INFORMATION CARD


APPLIANCE REPAIR HANDBOOKS－13 volumes by service experts；easy－to－ understand diagrams，illustrations．For major appliances（air conditioners，refrigerators， washers，dryers，microwaves，etc．），elec． housewares，personal－care appliances． Basics of solid state，setting up shop，test instruments．\＄2．65 to \＄7．90 each．Free brochure．APPLIANCE SERVICE，P．O．Box 789，Lombard，IL 60148．（312）932－9550．
CIRCLE 84 ON FREE INFORMATION CARD

## MAKE MONEY IN YOUR OWN ELECTRONICS REPAIR BUSINESS！

Stereos，TVs，VCRs，PCs．．．if you enjoy fix－ ing them，we＇ll show you how to start your own business．It＇s all spelled out in THE ENTREPRENEUR＇S ACTION KIT， the no－nonsense guide to starting and running a small business successfully． This remarkable，new desktop reference set is the only small business start－up guide you need to go into business for yourself！
Complete！Concise！Easy－to－use！

| Learn it all from our experts： |
| :--- |
| 日 Accounting，Personnel |
| 日Choosing a Location |
| 日 Time Management |
| 日 Getting Financing／ |
| Start－Up Money |
| 日 Advertising |
| and More！ |
| ON TV ！ |
| BuS Bus Bus Bus |
| Bu Bu Bu Business |

8 SOFT－COVER TEXTS 8 CASSETTE TAPES \＆ 7 SPECIAL SUPPLEMENTS
2 FREE GIFTS IF YOU ORDER NOW！ （See coupon for details）
30－Day No－Risk Guarantee Assures Your Satisfaction！
You have 30 days to examine the Entre－ preneur＇s Action Kit．If for any reason， you decide it＇s not for you，simply return it to us for a full refund．But keep＂Money Sources＂－the special guide on financ－ ing－plus the cassette＂Money Talk＂as your 2 FREE GIFTS，just for reviewing the complete set．Order today！
THIS IS THE
ENTREPRENEUR＇S
ACTION KIT
CALL NOW
1－800－942－8800
DEPT．RAIAA9
And Charge it to
Your VISA，MC，AMEX！ or Mail Coupon Today！ Dept．RAIAA9 925 Oak Street，Scranton，PA 18515
YES！Rush me the Entrepreneur＇s Action Kit！If not completely satisfied，I＇ll return it within 30 days for a full refund，but keep the financing guide，＂Money Sources＂and the cassette，＂Money Talk＂as my FREE GIFTS．I＇ve enclosed $\$ 49.00$ for the complete set plus $\$ 2.25$ postage and handling（ PA and CA
residents add $\$ 2.94$ sales tax）．
$\square$ Check or money order enclosed

Expiration Date
NAME
ADDRESS $\qquad$
CITY
STATE APT\＃

| RELAYS |
| :---: |
| continued from page 63 |

coil to latch and a second to reset． Carrying the latching idea one step further，a coil，a ratchet，a cam，and several sets of contacts can be com－ bined to create an impulse－driven se－ quencing relay．The cam is usually cut to provide a specific switching se－ quence for controlling operations；a home－appliance example might be a washing machine．

In a magnetically－latched reed re－ lay，a small permanent magnet goes inside the coil．The magnet is strong enough to hold the reeds together once in contact，but not strong enough to pull them together initially．Ener－ gizing the coil with one polarity adds to the field and closes the reeds， which remain closed until the coil is energized with the opposite polarity． For applications where reversing coil polarity is inconvenient，two－coil latching reeds can be used．A similar idea using a weaker magnet is some－ times used in non－latching＂polar－ ized＂relays to improve efficiency． The magnetic field reduces the coil current needed to actuate the contacts， but is weak enough to release them once the coil is deenergized．

The IC relay，recently introduced by Aromat，uses an IC，a capacitor， and a latching reed in a single pack－ age．The IC uses the capacitor to pulse the relay，latching when a con－ trol input goes high and resetting when the control goes low．Since coil power is drawn only when pulsed， average power use is very low．Time－ delay relays provide delay in actua－ tion，dropout，or both，as shown in Fig． 9.

The on－delay relay of Fig．9－$a$ pulls in during the operating voltage and remains energized until the operating voltage is removed．Off－delay relays as in Fig．9－$b$ need continuous power as well as a control input，energizing immediately after the control goes high，and beginning their turn－off de－ lay after the control goes low．Interval relays，as in Fig．9－c，energize imme－ diately on the appearance of the oper－ ating voltage，and turn off prior to the end of the operating voltage．In the latching－interval type of Fig．9－d，the control can turn off any time．

In the on－delay／off－delay version of Fig．9－e，there are two independent delays，each referenced to the leading
and trailing control－pulse edges．The repeat cycle version of Fig．9－f has two delays，the second dependent on the duration of the first．The on－delay relay of Fig． $9-g$ finds the area under the pulses of the control by integra－ tion，which in this case is directly proportional to total control－pulse du－ ration，and compares this accumu－ lated value to a reference to determine when to energize the output relay．The output pulse－duration is independent of its turn－on time．Finally，in the latching on－delay version of Fig．9－h， the control pulse can turn off at any time．

In the past，the delay was mechan－ ical，but is now usually electronic， usually a variation on a monostable multivibrator．Mechanical time－delay relays used inertial masses for frac－ tion－of－a－second delays，and motor－ driven mechanisms for delays ranging from seconds to hours．Thermal mechanisms，less expensive but less accurate，were also used；some ver－ sions are still available．

Timing relays have progressed to the point now of including micro－ processors，crystal timing，and thumb－wheel control．Those relays provide variable latching interval each time the input goes high，various counting modes，and other functions． Finally，low－offset reed relays mini－ mize errors when switching millivolt and microvolt DC signals，providing optimum accuracy in data acquisition systems which switch signals from low－level transducers such as ther－ mocouples and strain gauges．Figure 10 shows one such device by Ther－ mosen，Inc．The contacts are outside the magnetic coil，eliminating the need for magnetic－alloy contacts，and permitting high－conductivity gold－ plated silver contacts to be used．

One major problem in switching and handling low－level DC signals is unwanted thermocouple voltages． Any connection of unlike conductors forms a thermocouple，generating a voltage varying with temperature． Usually，the internal conductors are silver and the pins are silver alloy．The external pin－to－copper connections are located close together to ensure equal temperatures and thermocouple voltages．Internally，the physical sep－ aration of the contacts and the coil minimizes heat in the conductive path．The manufacturer states that the relay introduces a net thermal offset of less than $1 \mu \mathrm{~V}$ ．

R－E

##  WE HAVE WHAT YOU NEED FOR HOLIDAY PROJECTS！ New Battery＂Hotline＂Service—Hundreds of Types Available

## We Can Now Supply Virtually Any Currently Manufactured Battery！

In addition to our large in－store stock，Radio Shack can now supply almost any battery．Our expanding selection even includes special communications batteries for walkie－talkies and pagers．Batteries are sent from our warehouse to the Radio Shack near you．And there＇s never a postage or handling charge．


For Damage－Free IC Handling

（1）IC In／Out Tool Kit．For 6 to 40 －pin DIPs．\＃276－1581
（2）IC Pin Aligner，\＃276－1594 2.99
（3）Conductive Foam． $5 \times 5^{\prime \prime}$ safety mat
for your bench．\＃276－2400 ．．．．．．1．29


（4）Static－Draining Wrist Strap．With $24^{\prime \prime}$ ground lead and mini alligator clip \＃276－2397 ．．．．．．．．．．．．．．．．．．．．． 3.29
（5）Soldering Heat Sink．Prevents heat damage．\＃276－1567 ．．．．．．．．．．．．．．1．39

Meter and Box

（1）0－15 DC Voltmeter．Mounts in $17 / \mathrm{s}^{\prime \prime}$ round hole．\＃270－1754 ．．．．．．． 7.95 （2）Two－Piece Enclosure．Easy to drill or shorten，if desired．Accepts PC board and 9 V battery． $55 / 8 \times 21 / 4 \times 11 / 16^{\prime \prime}$ ． \＃270－257

RS－232 Connectors，Accessories
（1） （2）

（5）

（6）
（1）（2）Solder－Type D－Sub Connectors

 （3）Metal－Shielded Connector Hoods． 25．Position 276－1508
（4）Inline RS－232 Tester．Spot line prob lems fast．\＃276－1401
14.95 （5）NEW！Shielded Stunt Box．Wire in cluded PC board to suit．\＃276－1403， 9.95 （6）NEWI DIP Shunts． （6）NEWI D
\＃276－1512．

Pkg．of $10 / 1.29$

## Harness the Sun

（1）

（1）Silicon Solar Cell．Produces about 0.3 amp at 0.55 VDC ．\＃276－124 ．． 3.95 （2）Solar Project Kit．Includes mini so－ lar panel，motor，propeller，project book let．\＃277－1201
10.95

## Assortments


（1） 20 LEDs．Assortment may include MV－5054，MV－50，RL－209 in red， green，amber，infrared．
\＃276－1622
Mini Audio Amp


High－Gain IC Design
With a built－in speaker，it＇s the perfect test amp and also well－suited for com－ puter voice and music synthesis applica－ tions．Has volume control and $1 / 8^{\prime \prime}$ input
＂PC＂Line Cords


Top－quality，grounded 6 －foot $A C$ cords for com－ puters，printers，business machines．UL listed． （1）With Straight HP（CEE－Type）Connector． （2）With $90^{\circ}$ HP Connector Ideal for tight （2）With $90^{\circ} \mathrm{HP}$ Connector．Ideal for tight （3）Extension．278－1259
.5 .99
.4 .99

Infrared Buys

## Power Hookups <br> 

Ideal for Nintendo＊ Adds extra zip to popular video games！Features autofire switch two separate＂fire＂buttons and start／select control．\＃270－1704 －Registered trademark of Nintendo



Design Your Own IR Control System
 limiter，filter and more！\＃276－137，3．49 （2）SEP8703－1 IR LED．High power out－ put．\＃276－143
1.69
（2） 5 Photocells．CdS photoresistors and rat experiments．Various styles

Breadboard \＆Jumpers

（1）Deluxe Breadboard．Molded $21 / 4 \times 61 / 2^{\prime \prime}$ board is mounted on a $7 \times 4^{\prime \prime}$ steel base with rubber feet． 640 plug－in points and three binding posts．\＃276－169 （2）NEW！140－Piece Jumper Wire Kit．\＃276－173

Convenient data－hold button freezes display and lets you remove tester for easy reading．Features autopolar－ ity，continuity sounder，low－battery indicator．Measures batteries and case．\＃22－165

## ＂Pro＂Soldering Station



Ideal for Testing On－the－Go

Over 1000 items in stock！Binding Posts，Books，Breadboards，Buzzers，Capacitors，Chokes， Clips，Coax，Connectors，Fuses，Hardware，ICs，Jacks，Knobs，Lamps，Multitesters，PC Boards， Plugs，Rectifiers，Resistors，Switches，Tools，Transformers，Transistors，Wire，Zeners，More！

Radio Shaek
The Technology Store ${ }^{*}$

# Drawing <br> <br> Board 

 <br> <br> Board}

## PC photography

ALTHOUGH THE FURTHER YOU GET IN making a PC board, the less thought is involved, things don't necessarily get easier. When you finally do the photographic part, you may be thinking less, but you'll be working just as hard. Don't forget Grossblatt's twelfth law: things dont get better, they just get different; a problem is a problem, no matter how you look at it.

## Making the negatives

By this time you should have a camera negative of the PC board layout you made on graph paper. It may be full of dust spots ("hickies"), but they'll be taken care of later. Having the camera film doesn't mean you can trash the original artwork-close, but not quite. The next thing to be done are the actual camera film negatives; how much work that entails depends on whether you're using positive or negative resist. No matter what method you use, the first step is to enlarge the camera film and make a full-size print of the layout. An enlarger is best, but there's another way if you don't have one.

If you shot the layout with 35 mm film, you can put the film in a mount and use a slide projector instead of the enlarger if you're careful. Use glass mounts to make sure the projector bulb heat doesn't curl the film and distort the image. Put a red filter over the projector lens so you can position the unexposed film. You'll also need some way to make sure the unexposed film surface is perpendicular to the slide in the projector.

The enlargment setup you'll
have to arrange is shown in Fig. 1. It's not as good as an enlarger, but it can work if the slide projector is set up properly and the room is dark enough. The print made this way will be actual size, so use lithographic film at least an inch larger than the PC board in both dimensions. This gives you an extra border to handle the negative and tape it to the PC board copper side.


FIG. 1
Exposing and processing the film is easy, but making the final print exactly $1: 1$ will take work. Some people put dimension marks on the original artwork and measure them on the projected image. This is a good theoretically, but remember Grossblatt's eighth law: theory and practice are oniy theoretically related.
The only way to absolutely guarantee actual size is to project the image onto graph paper from the
same pad you used to create the artwork in the first place. Standard component spacing is done in 0.1inch increments, making the graph paper a perfect negative template. Tape a piece of flat black paper on a wall, since you'll need a backing for the film when you make the actual exposure. If you use an enlarger, tape the black paper to the easel. The projector light will go right through the film; without a black surface to absorb it, there might be a second, spurious, image.
Put the graph paper on top of the black paper, the original camera film in the enlarger or projector, and adjust the projected image size. Varying the image will also change it's size so you'll have to adjust for a sharply focused image of correct size. You can use IC pads as a good way to check image size. Since they're on 0.1 -inch centers, they should line up with the graph paper grid. Check the size at points all across the image to make sure of the enlargement. If one edge lines up but not its opposite, the image isn't being projected perpendicularly.

Exposure and development are done the same way as for the original camera film, the only difference being the exposure time since you're using a different light source and lenses. There's no exact time to use, but the film has incredible latitude; since you can watch it develop, better to overexpose than to underexpose.

A 1-minute exposure time is a good reference; the film is expensive, so experiment on small test pieces first. Once the film is developed and dried, you shouldn't
need the original artwork any ionger. If you modify the layout, you can always make a paper print of the film to make the changes. Besides, the adhesive on the tape and pads on the original eventually dries out and falls off the graph paper.

Next, clean any dust off the film using a magnifying glass and X acto knife. Lay the film emulsion side on a piece of white paper and carefully scrape off the hickies and other contamination. Use tape and pads to add black to the film on the base side, not the emulsion, since the next step is to contact print the film with the emulsion side down.

If you use positive resist, you're finished with the photographic part of this process, but if you use negative resist, you still have to make a film negative. You can make PC boards reliably either way, but while negative resist takes an extra photographic step to make the film, it gives you another chance to clean it.

All the black on the positive becomes copper on the final board, so scraping away emulsion is equivalent to removing unwanted copper. When working with a negative, the clear areas become the copper so scraping emulsion is the same as adding copper.

Producing the negative is done by contact printing the positive on a piece of lithographic film. You can use the projector or the enlarger as the light source with the same exposure times. Put the two pieces of film emulsion-to-emulsion, and lock them in a contact frame. You can also use glass, but back the whole thing with black paper again; the PC board production setup is shown in Fig. 2.

## Making the PC board

Once you've got the final print, you're ready to deal with the copper PC board; it has to be sensitized, exposed, and developed, before it can be etched. Cut yourself a piece of PC board at least an inch larger in each dimension than the printing negative. Before the PC board can be sensitized, the copper has to be absolutely clean.
The best way to clean the copper is by scrubbing with soap-filled Continued on next page

| RC DECADE BOX |
| :---: |
| continued from page 42 |

increase residual resistance and capacitance, and cause inductive effects at high frequencies. Solder resistors as close to the switch terminals as possible, and the fuse holder goes between BPl and the pole of S6. Pin 1 of S6 is soldered to the pole of S5, pin 1 of S5 to the pole of S4, etc., ending with pin 1 of S 2 being soldered to the pole of S1. The pole of S1 is soldered to pin 1 of S13.

Solder capacitors to each position on S7-S12, and their common leads to a single lug above the switch base. Connect all common lugs together and to pole 2 of S13. Solder all poles of S7-S12 together, and then to BP6. Drill the case as in Fig. 5.

## Checkout

Visually inspect all wiring and soldering; to complete the checkout, use an ohmmeter and capacitance meter. Turn S13 to position R/C, set S1-S6 to zero, place an ohmmeter between BP1 and BP2, and measure the, residual resistance; it should be under 1 ohm. As you rotate S1, the meter should increment by the value of the connected resistors. Set S1 to 0, and repeat for S2-S6. After S1-S6 are tested, set each to 1-6, in turn. The meter should indicate the sum of each switch times its multiplier, or 1.11111 megohm, 2.22222 megohm, etc., up to 11.1111 megohm. Repeat for the capacitance section.

Turn S13 to the SER position and measure the capacitance between BP1 and BP6; you won't be able to measure resistance in this position. In the PAR position, measure both resistance and capacitance between BP1 and BP6. In the LPF position, measure the resistance between BP1 and BP6, and the capacitance between BP6 and BP4. With S13 set to HPF, measure the resistance between BP1 and BP4, and the capacitance between BP6 and BP1. The decade box should now be finished.

Once you've gotten everything working, using the resistance or capacitance sections is straightforward. Just set S13 to the desired position, and use the terminals indicated in Fig. 4 and Table 1. The RC filters can be used to either eliminate unwanted circuit noise, or perform pulse shaping and delays.

R-E

## A New AOR Scanner

## 100 Channels Low, Air, High, UHF \& 800MHz

 $\begin{array}{ll}\text { mobile. Includes AC } & \text { Total Price, Freight Prepaid } \\ \text { (Express Shipping Optional) }\end{array}$ and DC power cords, mobile mount hardware and 2 antennas.


- Covers $27-54 \mathrm{MHz}$,
$108-174 \mathrm{MHz}, 406-512 \mathrm{MHz}$ and $830-950 \mathrm{MHz}$.
- 5 Scan Banks and 5 Search Banks
- 25 Day Satisfaction Guarantee - No Frequencies Cut Out.



10707 E. 106 th St. Indpls., IN 46256 Toll Free 800-445-7717
Visa and MasterCard
(COD slightly higher)
In Indiana 317-849-2570 Collect FAX (317) 849-8794 CIRCLE 182 ON FREE INFORMATION CARD DIGITAL VIDEO STABILIZER ELIMINATES ALL VIDEO COPY PROTECTIONS


While watching rental movies, you will notice annoying periodic color
darkening, color shift, unwanted lines, flashing or wanted lines, flashing or caused by the copy protection jamming signals embedded in the video tape, such as Macrovision copy protection. Digital Video Stabilizer: RXII completely eliminates all copy protections and jamming signals and brings you crystal clear pictures.

FEATURES:

- Easy to use and a snap to install
- State-of-the-art in-
tegrated circuit technol-
- 100\% automatic - no need for any troublesome adjustments
- Compatible to all types of VCRs and TVs
- The best and most exciting Video Stabilizer in the market
- Light weight (8 ounces) and Compact ( $1 \times 3.5 \times 5^{\circ}$ )
- Beautiful deluxe gift box

WARNING
SCO
Electronics and RXII dealers do not encourage people to use the Digital Video Stabilizer to duplicate rental movies or copyrighted video tapes. RXII is intended to stabilize and restore crystal clear picture quality for private home use only.
(Dealers Welcome) - Uses a standard 9 Volt battery which will last 1. 2 years.

ToOrder: $\$ 49.95$ ea $+\$ 4$ for FAST UPS SHIPPING 1-800-445-9285 or 516-694-1240 Visa, M/C, COD M-F: 9-6 (battery not included) SCO ELECTRONICS INC. Dept. CR5 581 W. Merrick Rd. Valley Stream NY 11580 Unconditional 30 days Money Back Guarantee CIRCLE 191 ON FREE INFORMATION CARD
steel wool and hot water. You'll leave fine scratches, but make sure they're linear, not circular; development will be easier if this is the case. Dry the board with paper towel (watch out for lint), and handle it only by the edges or skin oil will ruin your work.
Resist comes in both spray cans and bottles. I don't use spray cans because they have a habit of spitting, are expensive, and have limited shelf life. I bought a quart bottle of Kodak Photo Resist (Catalog \#189-2074) about eight years ago, I've made a lot of boards with it, and it's still half full. The same with the developer; I bought a galIon of Kodak Photo Resist Developer (Catalog \#176-3572) at the same time and still have half left. All of the chemicals you use have some level of toxicity. Work in a well-ventilated area, and keep the containers well sealed.
Pouring the resist on the PC board is simple, but more is too much. Pour a few drops on the copper and cover the surface by slowly tilting the board from side to side. You can use a small brush,


FIG. 2
but keep the strokes short, and make sure no air bubbles or contamination get trapped on the surface. Once covered, set it at an angle to let the excess run off. The resist is only sensitive to a narrow band of UV, so you can keep a fairly bright light on while you're working.
The resist dries quickly, but you
can speed things along with a hair dryer. This tends to get resist trapped in the upper part of the liquid and makes exposure and development much easier. Use about a $100^{\circ} \mathrm{F}$ (medium setting on most models) because the resist loses photosensitivity if it's too hot. Make the exposure by putting the negative on the board, locked in the contact frame.

I use an old sun lamp to expose the board for 7 minutes at about 2 feet, but any light source between 300-400 nanometers in wavelength will work, like mercury vapor (found in most sun lamps), or type-BL UV fluorescent lamps.

Applying the resist and making the exposure are critical to making the PC board, so you can never get too much information. Kodak makes a great booklet called "Photofabrication Methods with Kodak Photo Resists" (Catalog \#P-246), that even has answers to questions you never thought of; get it. Next month, we'll finish off, and discuss what can be done to make the PC board manufacture less of a hassle.

R-E

## CABLETV

## TB-3 (Tri-Bi) or SA-3

 Quantity

Each

20 Prices 50 $\$ 43$. Each

Each

> King Wholesale 1-800-729-0036
"No one beats the King's prices!"

## D <br> E <br> S <br> C <br> R <br> A <br> M <br> B <br> L <br> E <br> RS

## SPECTRUM ANALYZER

continued from page 32
peak again centered, the user then sets the var span to Cal. The peak should compress to its minimum observable width, and the user moves the horiz position knob to recenter the peak one final time. If done properly, rotating the var SPAN control toward zero span should expand, but result in no horizontal deflection. The procedure should become habit after a couple of trys.

## The graticule and CRT

The vertical axis is calibrated in both dBm and dBmV ; there's a 49 dB difference between the two scales. The top horizontal line of the graticule indicates numbers in both dB and dBmV , the reason being that the graticule was a holdover from an earlier instrument. The numbers indicate the interpretation associated with the top horizontal line, for the various three lower settings of the
reference level knob; the upper setting ( 20 dBm or 69 dbmV ) isn't represented. The PSA-65A also updates the CRT every 5 seconds, causing it to flash briefly.

## Conclusion

Even with the minor limitations like the tuning knob lag on the LCD in NORM mode, the nonlinearity of the fine tune knob, the reverting to a time-dependent display in the zero span position of the var span knob, and the need for horizontal calibration, this is a very impressive instrument for the price. It allows spectrum-analyzer capability at a fraction of normal cost, and will popularize the concept of using one as a complement to an oscilloscope. AVCOM is certainly moving toward their goal of putting a low-cost spectrum analyzer on every RF technician's workbench.
At $\$ 2675$, the PSA- 65 A is a definite bargain. Even if you think that you don't need a spectrum analyzer, we're sure this one would prove you wrong.

Try the

## Electronies

bulletin board system
(RE-BBS) 516-293-2283

The more you use it the more useful it becomes.

We support 300 and 1200 baud operation.

Parameters: 8N1 (8 data bits, no parity, 1 stop bit) or 7E1 (7 data bits, even parity, 1 stop bit).

Add yourself to our user files to increase your access.

Communicate with other R-E readers.

Leave your comments on R-E with the SYSOP.

RE-BBS 516-293-2283

## CABLE - TV

 band - stop filters- FOR ELIMINATION OF SEVERE INTERFERENCE
- FOR "CENSORING" OF ADULT BROADCASTS

- ATTENUATION - 45 dB TYPICAL
- BANDWIDTH - 4 MHz AT 5 dB POINTS
- INSERTION LOSS - 2 dB

| MODEL | TUNING <br> RANGE | FOR <br> CHANNELS |  |  | PASSBAND |
| :---: | :---: | :--- | :--- | :--- | :---: | PRICE | SHIPPING/ |
| :---: |
| HANDLING |

3 for \$72-10 for \$180-mix \& match
Call Toll Free For C.O.D. or Send Check To Order No Shipping Charges

- Shipped Within 3 Days - 30 Day Money Back Guarantee

FACTORY DIRECT FROM

P.O.Box 94917

Las Vegas,NV 89193-4917

1-800-433-6319

## NOISE REDUCTION FOR UNDER S10.

M/XNG CONSOLES
SWITCHES MICROPHONE CONNECTORS
SNAKE CABLES
BATTERY CONTACTS
Even the finest equipment in the world cannot guarantee noise-free operation. One "dirty" connection anywhere in the electrical path can cause unwanted noise or signal loss.

## "MORE THAN A CONTACT CLEANER"

CRAMOLIN ${ }^{\text {® }}$ is a fast-acting, anti-oxidizing lubricant that cleans and preserves all metal surfaces, including gold.
When applied to metal contacts and connectors, CRAMOLIN ${ }^{\text {© }}$ removes resistive oxides as it forms a protective molecular layer that adheres to the metal surfaces and maintains maximum electrical conductivity.


## DIGI-COMPASS

## continued from page 51

The "port" value shows the currently used LPT port. You can switch between the available LPT ports by pushing the " P " key. That is extremely handy while debugging the compass or if you have two compasses attached to your computer.

The text-only program, textcompexe, must be used if your display adapter is not compatible with COMPASS.EXE. It too will auto-configure the LPT port and provide default acquisition averages. You can include the LPT port on the command line as well as the number of acquisition averages to perform (up to 255). To include the average argument, you must include the LPT port argument. Standard syntax is: TEXTCOMP LPTn10, where " n " is the printer port desired ( 1,2 , or 3 ), and " 10 " is the number of averages (0-255).

## Calibration

All adjustments must be made on a flat non-metallic surface, and the compass unit must be calibrated ac-

cording to the manufacturer's instructions first. Keep the compass sensor away from the compass display, computer equipment, metal objects, etc. Any magnetic fields generated by electronic equipment or appliances, or nearby ferrous metals could affect the calibration accuracy of your DigiCompass. Also, do not use a metal screwdriver to adjust the compass or your adjustments will be meaningless; use the supplied non-magnetic adjusting tool.

To run the text-based compass program, plug the interface into the parallel printer port of an IBM PC/XT/ AT. On the command line type "TEXTCOMP LPTx" (where x is a 1,2 , or 3 , depending on the port used). Be sure to specify directory paths as required. For example, suppose you plugged Digi-Compass into LPT1 and had TEXTCOMP.EXE on a floppy in the A drive. At the command prompt, you would type "A:TEXTCOMP LPT1."

To calibrate the interface unit, adjust the "max-limit" potentiometer (R17) to 4.15 -volts DC at pin 1 of IC3 and the "min limit" potentiometer (R18) to 1.15 -volts DC at pin 3 of IC3. With the interface unconnected from the computer, carefully direct the flux-gate sensor exactly to the Northeast, keeping the sensor perfectly horizontal. Adjust the "gain" potentiometer (R16) on the interface so that pin 2 of IC3 is 4.25 -volts DC.

Aim the sensor up to 5 degrees towards the North, and then up to 5 degrees to the East, and verify that the voltage does not exceed the adjust-ments-otherwise re-adjust. When aiming the sensor for the 5 -degree test, ignore all measurements beyond the 5 degrees.

With the Digi-Compass interface connected to the computer and TEXTCOMP.EXE running, verify that at the Northeast direction, when the X and $Y$ readouts match $( \pm 2)$, that the highest value is $220( \pm 5)$. Adjust R17 to set the highest value. Next, verify that at the Southwest direction, when the X and Y readouts match $( \pm 2)$, that the lowest value is $30( \pm 5)$. If necessary, adjust R18 on the interface to set the lowest value. Now go back and recheck those steps, as they are interactive. Verify that the compass readings match the computer's readouts while in the "digital" mode. The Digi-Compass interface is now adjusted.

R-E

| CD PLAYERS |
| :---: |
| continued from page 53 |

detector outputs are fed to a preamp and a data strobe to differentiate between logic-highs and logic-lows and extract sync. The data processor demodulates signal data, does error detection/correction, and performs overall signal processing control.

All CD's have some provision for interleaving error-correction information into signal data when a disc is recorded, minimizing the effect of audio dropouts. The loss is distributed over various smaller gaps in the final audio. "Filling in" missing information on either side of a gap isn't difficult; the $\mathrm{D} / \mathrm{A}$ converter follows the signal processing, and the restored analog is then restored to pure twochannel audio by a Sample-and-Hold (S/H), and applied to the two stereo channels.

## Proper test equipment

When servicing CD players, the entire laser pickup has to be replaced in the event of a failure; optics are rarely adjustable, except for the drive motor, drive belt, or gears. According to a recent EIA publication, the laser pickup is most prone to failure due to wear. $C D$ test equipment is similar to that used in standard audio. Sencore Electronics has many CD servicing products (see Table 1), but they don't have a laser-power meter. While such meters are available, you can get by without one by testing the detector diode outputs; if incorrect, the defect is in the laser pickup.

You'll need a test disc, available from some CD manufacturers, and a standard disc with prerecorded highprecision test signals. Play it and note the CD's response, using the indicated instruments, if possible. The test disc is used to make any CD adjustments. You can use any known good disc and a stereo power amplifier analyzer for a final check and to demonstrate the player for a customer.
Servicing CD players requires that you know what the basic function of each section of the circuitry does. You will, of course, also need your basic electronics troubleshooting skills. Aside from that, all you really need is a little mechanical know-how; just study the mechanical operation of the player, and you'll probably find the defective part.

R-E


## TJ BYERS

ISDN paints an attractive picture of communications in the next century, but for now we'll have to live within the confines of the Public Switched Telephone Network for our communications needs. And that means improving the speed and performance of existing modem technology.
Fortunately, modem technology has kept pace with increasing PC speeds. Using advanced data compression and encoding techniques, in only a few years modem communications has gone from 300 bits per second (bps) to 9600 bps -with some modems having data throughput exceeding $30,000 \mathrm{bps}$.
Unfortunately, the lack of a single high-speed modem standard makes it impossible to pick just any modem from your dealer's shelf and expect it to talk to anybody else's modem. Many models use proprietary transmission modes that can only talk to modems of their own kind.
So how do you know if one modem can talk to anther modem from a different man-
ufacturer? By understanding how modems differ, as we shall see.

## Establishing the ground rules

A modem has two basic functions. The first is to convert binary data into analog signals for transmission over standard telephone lines, and the second is convert analog signals back into binary data suitable for a computer. The first process is called modulation, and the second, demodulation, hence the name modem (MOdulation/DEModulation).
To ensure that modems from different manufacturers can communicate, standards for encoding, transmission, and decoding have been established, first by AT\&T and more recently by the CCITT (Cooperative Committee for International Telephone and Telegraph).

At speeds as high as 2400 bps , the protocols are well defined and universally accepted, and virtually all modems within this class can communicate with one another. It's beyond 2400 bps that problems begin.
continued on page 86

## EDITOR'S WORK Bench <br> 

386 Power On A 286 Budget

You want a 386, but your pocketbook says no. End of discussion? Maybe not, depending on what you want that 386 for. If it's raw speed you're after, you're out of luck. But if intelligent memory management puts a gleam in your eye, you'll find a Canadian product called the All ChargeCard highly interesting.
Briefly, the All ChargeCard is a small module that you install between the 80286 microprocessor and your system board. The basic product costs about $\$ 400$, but unless your 286 is a PGA type (most non-IBM machines aren't) and readily accessible, you'll need a $\$ 100$ adapter kit. Figure 1 shows the module surrounded by various adapters and tools included with the kit.
By itself, the ACC doesn't change operation of your system one iota. But with the accompanying software, the ACC lets you pull 386 -like tricks on your 286. Such as?

- Increase DOS size to 736 K (in color systems not running graphics programs, or 704 K in mono systems).
- Speed up system operation by ROM "shadowing" (running the BIOSes from RAM, rather than ROM, which is slower).
- Use memory above 640 K for DOS's FILES, BUFFERS, and LASTDRIVE storage areas.
- Use memory above 640 K to load device drivers-including RAM-hungry network drivers.


FIG. 1

- Use memory above 640 K to load TSR's: SideKick, DOS's MODE program, Smart Key-you name it.
- Convert some or all extended memory into fully register-compatible EMS 4.0 memory, which is great for running OMNIVIEW and Windows.
- Add EMS 4.0 page frames above 640 K to let Windows run more efficiently.
The disadvantages? Cost is one. At $\$ 500$, the ACC is just a few hundred dollars cheaper than the least expensive 386SX system boards that are currently on the market. And even with the ACC, a 286-based system will never be able to run 32 -bit software, nor will it be able to take advantage of full 32 -bit address and data buses.


## Installation

Installation can be difficult, depending on the physical configuration of your system. If the microprocessor is soldered to the system board, you're simply out of luck. Best is a PGA type, which is used in IBM AT's and a few other compatibles. (All Computers has a list of machines and corresponding CPU socket types.) The PGA type has rigid pins that allow you to insert the IC into machined socket pins. Most machines, however, use LCC or PLCC types, which require the adapter kit.

In my test system (an AST Premium/286 with a PLCC socket), installation was fairly easy. My CPU socket is located near the left edge of the system board, not under the hard disk drive or disk


FIG. 2
controller, as with some compatibles. The module protrudes high enough above the system board to interfere with expansion cards, but by inserting my $2 / 3$ length Paradise VGA card in the matching expansion slot, I didn't have to sacrifice any slots. Prying the CPU out of its socket was quite difficult, even with the special tool supplied by the company. (The heatsink visible in the photos was supplied by me simply because I happened to have it, not because the company recommends it.)
After installing the card, you'll want to set up any non-DOS memory in your system as extended memory (that normally addressed linearly above the 1MB mark) to let the ACC do its tricks. You may have a problem if your system board forces you to allocate 384 K of memory as extended memory.
After completing the physical installation, you can boot your PC and run as normal. However, to reap the benefits of the ACC, you must install a device driver in your CONFIG.SYS file. Depending on the options you specify there, you can backfill memory to the 640 K mark or higher, specify the amount of memory to allocate as EMS and as extended, enable ROM shadowing, etc. To maximize contiguous DOS memory you should remove the FILES, BUFFERS, and DEVICE statements from your CONFIG.SYS and run All's corresponding programs from AUTOEXEC.BAT.

## The real world

I found the All ChargeCard a pleasure to use. With it, I ran OMNIVIEW (a multi-tasking environment) and was able to download files (using ProComm Plus) from an on-line information service at the same time as I wrote this review. In addition, the card increased my DOS memory space by about 25 K , and if I gave up the ability to run graphics programs, by about 120 K .

The ACC may seem kind of "kludgy" but it's been through several design iterations (early versions required you to modify your application programs), and most of the kinks have been

# SECRETS OF THE <br> COMMODORE 64 


#### Abstract

Socrets of the Socrets of the COMMODORE 64 BP135-A beginners guide to the Commodore 64 presents masses of useful data and programming tips, as well as describing how to get the best from the powerful sound and graphics facilities. We look at how the memory is organized, random numbers and ways of generating them, graphics-color-and simple animation, and even a chapter on machine code. Get your copy today. Send $\$ 5.00$ plus $\$ 1.25$ for shipping in the U.S. to Electronic Techology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.


## A PRACTICAL INTRODUCTION TO MICROPROCESSORS

BP123-Introduces microprocessors by having the reader construct a very simple microprocessor circuit that he can experiment with and thus hopefully gain a clear insight into this complex subject. The completed unit is only
 intended as an education aid, but can be built inexpensively and many of the parts can be reused for other applications later. Get your copy for $\$ 5.00$ plus $\$ 1.25$ for shipping in the U.S. from Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.


CIRCLE 61 ON FREE INFORMATION CARD
worked out. Even so, there are still a few. For example, you can't reset your machine by pressing Ctrl-Alt-Del or even a hard' reset switch; instead, you must run a small program that clears the ACC's registers and then performs the normal DOS reset sequence (i.e., JMP FFFF:0000). The problem is that you don't always have access to the DOS command line when you want to reset your machine (for example, if a program has hung your system). In that case, your only recourse is to power down and back up.

A somewhat more serious problem is that the ACC doesn't handle DMA operations properly. To increase transfer speed, tape backup units often grab direct control of the DMA hardware. That can be a problem with the All software running, because physical and logical memory no longer correspond to one another. The company supplies a program that is supposed to solve the problem, but it left my machine with only 372 K of DOS memory, which was not enough to run my Irwin 785 tape drive. My only recourse is to remove the All EMS driver from CONFIG.SYS, reboot, run the backup software, restore the driver, and reboot again. And that's a real pain. Of course, if you don't use
software that takes direct control of the DMA hardware, it won't be a problem for you.

All in all, then, the All ChargeCard is quite an intriguing device. At half the price, it would be a steal. However, at the \$500 level, it's just under 386SX system board and accelerator card prices (which will undoubtedly continue to fall), so choosing between the two is difficult. If compatibility with future 386 software is important to you, you'd be better off avoiding the ACC. But if you want to upgrade now at the lowest possible cost, the All ChargeCard won't disappoint you. ${ }^{\text {CD }}$


## Insults A La Carte

Creating insults is an all-butlost art. Anyone can string together a bunch of four-letter expletives, but that's not what I'm talking about. Rather, things like: You boring mound of septic
camel manure or You bungling tub of soppy buzzard barf or . . . well, you get the idea. If you admire such crafty use of language, but find it difficult to create such gems yourself, get a copy of Insults2, a public domain-program. It's available from the author directly for $\$ 5$, or free from many BBSes, including RE's (516-293-2283, 300/1200 $\mathrm{bps}, 8 / \mathrm{N} / 1$ ). The author also sells a related product, called Pranks, for $\$ 20$. Pranks is a collection of programs you can run on an unsuspecting user's PC to make him think there is something seriously wrong with it. Pranks is neither public domain nor shareware, and it must be ordered directly from the author. CD

[^4]| MODERN MODEMS |
| :---: |
| continued from page 83 |

One problem is simply the $2700-\mathrm{Hz}$ bandwidth of the telephone line. Another is the incompatible compression methods modem manufacturers use to maximize throughput. Lowspeed modems have the advantage because their $2400-\mathrm{Hz}$ bandwidth easily fits into the voice band. To move the data faster, however, we must increase the coding density of the carrier by using more complex coding methods (see sidebar).

Unfortunately, the transmitted waveform gets more intricate as coding density increases, and the hardware needed to differentiate between signal changes and line noise grows more complex and expensive. The solution is to change transmission method so the waveform is simpler. However, it's nearly impossible to get two modem makers to agree on a common transmission mode and data-encoding method.

## Competing techniques

The first attempts at creating a high-speed modem saw modem makers modifying cheap 9600bps modems already in common use by fax machines. Those modems, which use the CCITT V. 29 transmission mode, provide oneway (half-duplex) data transmission over normal phone lines. But for two modems to talk to each other and carry on a twosided conversation, they must have a full-duplex link. Two methods are commonly used to make the V. 29 modem behave like a full-duplex modem: pingpong duplexing and statistical duplexing.

In ping-pong duplexing the two modems take turns talking, like two persons carrying on a normal conversation. The first modem begins by turning its transmitter on and sending data. After a prescribed amount of time, control of the phone line is given to the other modem, which now transmits data until its turn expires. The process continues with the two modems swapping packets of data back and forth in

## MODEM SOUP

Modem jargon is replete with acronyms, coined words, and mysterious V.xx codes. Here is a list of the most common modem terms and their meanings. The definitions are grouped by category.

TRANSMISSION MODES V. 329600 bps, full-duplex, trellis encoding w/echo cancellation
V. 32 HDX 9600 bps, ping-pong duplex, QAM encoding, used by Hayes
V. 299600 bps, half-duplex, QAM encoding, for use with dial-up fax
V. 274800 bps, half-duplex, DPSK encoding
V. 222400 bps, full-duplex, QAM encoding
V. 221200 bps, full-duplex, DPSK encoding
V. 21300 bps, full-duplex, FSK encoding
Bell 2084800 bps, half-duplex, DPSK encoding
Bell 2121200 bps, full-duplex, DPSK encoding
Bell 103300 bps , full-duplex, FSK encoding

## ENCODING/DECODING

Trellis Modified Quadrature Amplitude Modulation
GAM Quadrature Amplitude Modulation
DPSK Differential Phase-Shift Keyed modulation
FSK Frequency-Shift Keyed modulation

DATA COMPRESSION
V. 42 Pending CCITT standard, compliant with MNP 2-4 error correction only
MNP 9 Includes all the features of MNP 7 plus V. 32 operation
MNP 7 Includes all the features of MNP 5 plus look-ahead fre-quent-character recognition
MNP 5 Provides sequential and frequent character data compression

## ERROR CORRECTION

V. 42 CCITT standard, compliant with MNP 2-4
MNP 4 Includes all the features of MNP 3 plus automatic variable data packet sizing
MNP 3 Synchronous framing using CRC
MNP 2 Asynchronous framing using parity bit checking
rapid, scheduled succession. The disadvantage is that valuable time is wasted if one modem has nothing to send.

Hayes is the most popular manufacturer using ping-pong duplexing (which they have labeled V. 32 HDX) with its V-series Smartmodem 9600. However, at 9600 bps, the Hayes modem can talk only to another Hayes modem-not even a 9600 bps modem from another manufacturer that uses the ping-pong method. (The Smartmodem 9600 is compatible with standard modems at lower speeds, however.)

Statistical duplexing uses a high-speed V. 29 data channel and a low-speed reverse channel to keep the two modems in touch. The reverse channel is a full-duplex service channel that operates at about 300 bps and is used to let each of the modems know the status of the other. Based on their communication needs, the high-speed data channel is assigned to one or the other. That arrangement is akin to one person in a conversation doing most of the talking-like a teacher who is occasionally interrupted by a student asking questions. Data buffering prevents loss of data when the data channel isn't immediately available.

Statistical duplexing makes better use of the link, but the data still only travels in one direction at a time. The current record holder for statistical data throughput is U.S. Robotics' Courier HST, with a claimed data rate of $14,400 \mathrm{bps}$.

## Echo cancellation

The fastest and most popular high-speed transmission method is CCITT's V. 32 full-duplex protocol. A V. 32 modem can send and receive data simultaneously because it places both conversations on the line at the same time and uses echo cancellation to sort them out.

Although the two signals clash and interfere with each other, the method works because each modem knows what it is sending. It's like the way we are able to carry on a conversation at a noisy cocktail party by tuning out ev-

## HOW MODEMS TALK OVER

## PHONE LINES

Sending digital data over analog phones lines may seem compli－ cated，but it＇s not really．The technology is based on a modu－ lated audio－frequency carrier （like the RF carrier used by ra－ dio and TV）that fits within the confines of the phone network＇s voice band．The trick is encod－ ing the earrier for reliable com－ munications over the wide range of changing line condi－ tions that are usually experi－ enced on the dial－up telephone network．

Although early modems used frequency－shifted keyed（FSK） modulation to get the message across，modern modems rely on phase－shift encoding．

The simplest phase－shift en－ coding scheme，called differen－ tial phase－shifted keying （DPSK），has two oscillators run－ ning 90 degrees apart．Accord－ ing to the value of the binary bit， the encoder chooses between one of the two oscillators at pre－ determined intervals to produce a waveform similar to that shown in Fig． 1.

The direction of the phase shift itself doesn＇t determine the value of the data bit．In－ stead，the bit value is deter－ mined by the algebraic sum of the vector components．The two oscillators are 90 degrees apart， so that gives us four vector pos－ sibilities $(+1,+1 ;+1,-1$ ； $-1,-1, ;-1,+1$ ），as shown in Fig．1．Consequently，if we want to encode a 1 onto the carrier，we must shift the phase difference so that the algebraic sum lands in quadratures $+1,+1$ or $-1,-1$ ．Phase shifts that place the vector in quadratures $+1,-1$ or $-1,+1$ cancel to zero． Encoding is done using an ex－ clusive Nor gate，and the signal is decoded using a phase－locked loop（PLL）．Both the Bell 212A and V． 22 1200－bps modems use DPSK encoding．

With DPSK encoding，the vec－ tor sum is scaled to unity $(+1)$ ． However，if we scale the quad－ rature components to fractions so that the vector sum assumes


FIG．I－PHASE－SHIFT KEYED MODULATION is a popular technique in older（less than 1200 bps ）modems．
a value somewhere between zero and unity，we can achieve greater coding density．This scheme is called quadrature amplitude modulation（QAM） and is the secret behind suc－ cessful high－speed modem data encoding．

The first of the popular mod－ ems to use QAM was the V． 22 modem－the same 2400 －bps modem that is sold by Hayes and just about everybody else．

In V．22，the vectors are scaled so that there are 16 vectors rather than four，which means the quadratures can now repre－ sent four bits of data instead of two．When this encoding scheme is used on a $1200-\mathrm{Hz}$ carrier，it means the carrier can be modulated at 600 baud and still leave us enough room for two carriers，one at 1200 Hz and one at 2400 Hz ，for full duplex operation at 2400 bps ．

However， 16 －point QAM is the limit for normal dial－up phone communications．Beyond that， the line noise overwhelms the smaller discrete signal changes unless complex－and expen－ sive－decoding hardware is used at the receiver．The eco－ nomical answer to faster com－ munications rates is to increase the frequency of the carrier．But
by doing so，the telephone＇s voice band can accommodate only one carrier．

An example of this transmis－ sion mode is V．29，the CCITT standard that is used by fax ma－ chines around the world．It uses a $2400-\mathrm{Hz}$ carrier to provide faithful communications at 9600 bps，but provides only half－duplex operation．

The V． 32 modulation tech－ nique is very similar to V． 29 ex－ cept that it provides full－duplex operation at 2400 Hz by using echo cancellation．Moreover，as a bonus of the complex data pro－ cessing required to make echo cancellation work，V． 32 is able to offer 32 －point QAM encoding． Instead of the expected eight bits of data，however，the eight vectors are trellis－encoded to provide five bits of data．Pres－ ently，the fifth bit is used to pro－ vide information for the pur－ poses of error correction，which means that the data throughput of V． 32 32－point vector is the same as it is with a 16 －point vector．But now that 32 －point GAM encoding is out of the bag，it may signal the be－ ginning of yet another round of modem rate increases．We＇re certainly looking forward to seeing that！
erything but what we want to hear. By creating inverted signals of its output and feeding them back into the receiver, the modem can sort out the mess through voltage cancellation. When the transmitter's output goes positive, the receiver's reference voltage goes negative, resulting in a zero voltage at the input of the receiver for that signal. Once the local signal has been canceled, what remains is the signal from the other modem.

It's sounds simple in theory, but actually it's difficult to implement because of defects in the phone network. Voltage reflections from phone connectors, switching relays, and the receiving modem itself cast echoes onto the line that confuse the receiver. V. 32 uses complex digital signal processors (DSP's) to locate and remove those echoes, but at the expense of added hardware.

Until recently, the cost of a V. 32
modem exceeded $\$ 2000$. But more and more manufacturers are building V. 32 modems, and prices are dropping below $\$ 1000$. Unlike the ping-pong and statistical protocols discussed above, a V. 32 modem can talk to any other V. 32 modem, provided both use echo cancellation.

## Data compression

A ploy frequently used to increase data throughput without inventing a new modem protocol is data compression. Data compression doesn't change the way your modem works, only the way the data is packaged before it is sent. For example, if you had a data compressor with a 4 -to- 1 compression ratio, you could achieve an effective throughput of 9600 bps using a standard 2400 bps modem.

Data compressors shrink data by looking for repeated characters or patterns in the data string and replacing them with unique

## TEACHING OLD MODEMS A NEW TRICK

If you'd like to take advantage of the new MNP error correction and data compression technology, but wince at the thought of having to buy a new modem to get it, you'll be happy to hear about MagicSoft's MTE communications software.

MTE allows you to add MNP 4 error correction plus MNP 5 data compression to your existing modem without making any changes to its hardware. Moreover, MTE isn't just a device driver that you attach to your existing communications program, but a complete communications package.

MNP operation is automaticand V. 42 compatible. The program queries the responding modem for MNP compatibility, then configures itself to the highest common MNP level. The MNP link can be made between any modem that has MNP built into it, or one that uses software to implement MNP (like modems from Zoom Telephonics). Once the link is established, communications proceed at data rates up to two times that
of normal. If the responding modem doesn't have MNP protocol, MTE defaults to the highest common standard data rate.

The MTE communications program is versatile, yet simple to use because of a user interface that supports both hot keys and Lotus-style menus. MTE also supports a wide variety of link protocols, including two versions of XMODEM and three versions of YMODEM. Other features include a log that records the length of the phone call and macros for automatic logon to on-line services (CompuServe, etc.).

Perhaps best of all is the MiniHost feature that allows the program to function as a simple bulletin board or as a sophisticated unattended modem. Anyone who calls while your system is in the Mini-Host mode will be able to use your MTE program to do a variety of tasks, including uploading and downloading files from the program's SEND and RECV directories.

So if you'd like to give your present 2400 -bps modem 4800 bps performance, MTE may be just the ticket.
control characters. The compressed data is then sent over the phone line. At the other end, the control characters are expanded back into their original sequence.

However, data compression is based on a software algorithm, and unless you use the same algorithm both to compress the data and to expand it, you'll end up with gibberish. Although several modem manufacturers offer data compression, about half of them use a proprietary algorithm that is compatible with machines made only by them.

Only the MNP Class 5 data compression method created by Microcom has garnered much popular support among modem manufacturers. MNP Class 5 works by identifying runs of identical characters, such as spaces or tabs in a table, and sending them as a shorter sequence. MNP data compression also counts the number of times a character appears in a document, like the letter " $e$ ", and renames those that are frequently used with a code that's shorter than its ASCII equivalent.

Microcom's newest data compression algorithm, MNP Class 7, includes all the features of MNP Class 5 , plus it takes advantage of predictable character sequences (such as the fact that $u$ usually follows $q$ in English) and replaces them with a single control character.

Average speed increases for MNP data compression are twice the normal data rate for Class 5 and up to three times the normal data rate for MNP Class 7. In fact, Microcom's 9600-bps QX/V.32c modem can throughput data at speeds in excess of $33,000 \mathrm{bps}$ when using MNP Class 7 data compression.

## Error correction

At any speed, modem transmissions are prone to error simply because of the noisy phone environment in which they must work. But as the speed of the modem increases, so does the error rate. Several methods are available for error detection and correction.

The simplest appends a ninth
bit, called a parity bit, to the data byte. The value of the parity bit is determined by the number of 1 s in the data byte. If the count is even, the parity bit is one; if the count is odd, the parity bit is zero. At the receiving end, the number of 1 s in the data byte are counted again and compared to the value of the parity bit. If the two don't agree, a data error is declared and the byte is sent again.

A faster method is to use cyclic

PRODUCT INFORMATION MTE (\$79)<br>MagicSoft, Inc.<br>P.O. Box 396<br>Lombard, IL 60148<br>(312) 953-2374<br>MODEM MANUFACTURERS<br>Cermetek Microelectronics<br>1308 Borregas Ave.<br>Sunnyvale, CA 94088<br>(408) 752-5000

Concord Data Systems
45 Bartlett St.
Marlborough, MA 01752
(617) 460-0808

General DataComm, Inc.
Straits Turnpike
Middlebury, CT 06762
(203) 574-1118

Hayes Microcomputer Products, Inc.
P.O. 105203

Atlanta, GA 30348
(404) 449-8791

Microcom, Inc.
500 River Ridge Rd.
Norwood, MA 02062
(617) 551-1000

Multi-Tech Systems, Inc.
2205 Woodale Dr.
Mounds View, MN 55112
(612) 785-3500

Racal-Vadic
1525 McCarthy Blvd.
Milpitas, CA 95035
(408) 432-8008

## Telebit Corp

1345 Shorebird Way
Mountain View, CA 94043
(415) 969-3800
U.S. Robotics, Inc.

8100 North McCormick Blvd.
Skokie, IL 60076
(312) 982-5001

Ven-Tel, Inc.
2121 Zanker Rd.
San Jose, CA 95131
(408) 436-7400
redundancy checking (CRC). In this method, a string of bytes is grouped together in a packet and then processed by an algorithm that produces a sum representative of the group. This CRC number is then sent along with the group. At the receiver, the received data packet is processed by the same algorithm and the results compared to the CRC value. As before, a difference between the two values prompts a retransmission of the data packet.

Obviously, CRC error checking is more efficient than parity-bit error checking because you don't have to process each byte individually. However, you still have to send new data to replace defective data. A high error rate significantly reduces the efficiency of CRC error checking.

The newest modulation technique, V.32, offers an optional fifth bit (trellis encoded). The value of the fifth bit is a logical derivative of the other four and represents a checksum that is similar to a parity bit of a byte. This extra bit gives the receiving modem the opportunity to use error correcting-not error detect-ing-techniques to recover the original data from the flawed signal with a considerable savings in time because retransmission is unnecessary.

As with data compression, everybody has an opinion on the best method for error detection and correction. And unless the method used is supported by both modems, it won't work. The most popular methods are MNP Classes 2 through 4 from Microcom. Recently, however, CCITT has approved its V. 42 error detection (with data packet retransmission on error) standard that includes compatibility with MNP Classes 2-4.

## Shifting gears

Time was when each modem had a niche in life. If you were a 1200 -bps modem, you communicated at 1200 bps exclusively; 4800 -bps modems could only talk with another 4800 -bps modem.

Then Hayes came out with its Smartmodem that could commu-


THE RACAL-VADIC 9632VP modem has CCITT V.32/V. 22 and Bell 212/103 compatibility with MNP through Class 5 for 19,200 bps performance.
nicate with both $300-$ bps and 1200-bps modems, and eventually $2400-\mathrm{bps}$ modems. Instead of having to buy a separate modem for each speed, you needed only one.

That same-one-does-it-all concept is even stronger today. Although you can find stand-alone 9600 -bps modems, you're more likely to find modems that support all popular speeds under 9600 bps.

However, you'll notice that the operative word here is "popular." As mentioned earlier, not all 9600 -bps modems are compatible, and you have to pay as much attention to five-speed modem standards as you do stand-alone high-speed modem standards.

## Something for everybody

Whether or not you're in the market for a high-speed modem, you'll find many of the features pioneered by this market trickling down into the next generation of low-speed modeems.

At the top of the list will be error correction and data compression. For example, if you choose a 2400-bps modem that offers MNP Class 5 data compression, you'll be able to talk to compara-bly-equipped $2400-$ bps and $9600-$ bps modems at data rates up to 4800 bps.

Yes, choosing a modem today isn't nearly as simple as it was just a year ago. But then again, you're getting a lot more for your money so no one's complaining too loudly. ${ }^{1}$ CD

# MARKET CENTER 

## FOR SALE

PHOTOFACT folders, under \#1400 $\$ 4.00$. Others $\$ 6.00$. Postpaid. LOEB, 414 Chestnut Lane, East Meadow, NY 11554.
GREAT buys! Surplus prices, ICs, linears, transformers, PS, stepping motors, vacuum pump, phototransistor, meters, LSASE, FERTIK'S, 5400 Ella, Phila., PA 19120.

## 

PRIVACY problem - need information? New electronic debugging, surveillance, protection catalog $\$ 5.00$ - kits-assembled. TECHNOLOGY SERVICES, 829B Ginette, Gretna, LA 70056.


CIRCLE 70 ON FREE INFORMATION CARD

JERROLD 450 module works good, information \$2. module $\$ 55$, COD only. BILL, 7014 East Golflinks \#124, Tucson, AZ 85730.

COMMUNICATIONS radio, electronic equipment, sales, service, FCC licensed, free catalog, RAYS, PO Box 14862, Fort Worth, TX 76117-0862.

## CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:
Radio-Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\$ 25.00$.
\}
$\begin{cases}\text { Education/Instruction ( ) Wanted ( ) Satellite Television }\end{cases}$ )

Special Category: \$25.00
PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.
(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

| 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 7 | 8 | 9 | 10 |
| 11 | 12 | 13 | 14 | 15 (\$46.50) |
| 16 (\$49.60) | 17 (\$52.70) | 18 (\$55.80) | 19 (\$58.90) | 20 (\$62.00) |
| 21 (\$65.10) | 22 (\$68.20) | 23 (\$71.30) | 24 (\$74.40) | 25 (\$77.50) |
| 26 (\$80.60) | 27 (\$83.70) | $28(\$ 86.80)$ | 29 (\$89.90) | 30 (\$93.00) |
| 31 (\$96.10) | 32 (\$99.20) | 33 (\$102.30) | 34 (\$105.40) | 35 (\$108.50) |

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted.):

Card Number
Expiration Date
$\overline{\text { Please Print Name }} / \frac{}{\text { Signature }}$

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED. CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $\$ 3.10$ per word prepaid (no charge for zip code)...MINIMUM 15 WORDS. $5 \%$ discount for same ad in 6 issues; $10 \%$ discount for same ad in 12 issues within one year; if prepaid. NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $\$ 2.50$ per word, prepaid....no minimum. ONLY FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face (not available as all caps) 55 per word additional. Entire ad in boldface, $\$ 3.70$ per word. TINT SCREEN BEHIND ENTIRE AD: $\$ 3.85$ per word. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: $\$ 4.50$ per word. EXPANDED TYPE AD: $\$ 4.70$ per word prepaid. Entire ad in boldface, $\$ 5.60$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD: $\$ 5.90$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: $\$ 6.80$ per word. DISPLAY ADS: $1^{\prime \prime} \times 2114^{\prime \prime}-\$ 385.00 ; 2^{\prime \prime} \times 214^{\prime \prime}-\$ 770.00 ; 3^{\prime \prime} \times$ $21 / 4^{\prime \prime}$ - $\$ 1155.00$. General information: Frequency rates and prepayment discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 10th of the third month preceding the date of the issue. (i.e., Aug. issue copy must be received by May 10th). When normal closing date falls on Saturday Sunday or Holiday, issue closes on preceding working day. Send for the classified brochure. Circle Number 49 on the Free Information Card.

## FREE CATALOG <br> FAMOUS "FIRESTIK" BRAND CB ANTENNAS AND ACCESSORIES. QUALITY PRODUCTS FOR THE SERIOUS CB'er. SINCE 1962 <br> FIRESTIK ANTENNA COMPANY 2614 EAST ADAMS PHOENIX, ARIZONA 85034

WANT a CD? But no amplifier input! Unique selectors give the input capability you need for any audio accessory. Write today for details. JEL, 409 Angus Blvd. 2B, Warner Robins, GA 31088.
2-WAY radio system. Used VHF base stations, portable radios, UHF car radios + many extras. (202) $944-2802$ for information.
VIDEOBEAMER links VCR to TV without wires \$99.00. MVS ANTENNAS, 1205 Coplon Ave. Schenectady, NY 12309.
CCTV video cameras: color Sanyo VCC3700 $\$ 395.00$, Panasonic B\&W $\$ 219.00$, others. PC video digitizer $\$ 249.00$. SAMPSON ENGINEERING, PO Box 550363, Dallas, TX 75355-0363. (214) 328-2730.

## CB RADIO OWNERS!

We specialize in a wide variety of technical information, parts and services for CB radios. 10-Meter and FM conversion kits, repair books, plans, high-performance accessories. Thousands of satisfied customer since 1976! Catalog \$2.

## CBC INTERNATIONAL

P.O. BOX 31500RE, PHOENIX, AZ 85046

TJ Services is here to serve you! Our quality products, quick courteous service, knowledgeable sales people and rock bottom prices prove it! Not sure what you need? Call (313) 726-0900 we'll help! Prices quoted are 20/10/5/1 lot. Jerrold DRX-3-DIC \$69/\$79/\$89/\$99, DSX-3-DIC \$59 each, DRX-3auto Tri-Bi-10 \$109/\$119/\$129/\$139, DRZ-3 $\$ 49 / \$ 59 / \$ 69 / \$ 79$, SB $\$ 45$ each. Tri-Bi-2 or 3 $\$ 69 / \$ 79 / \$ 89 / \$ 109$. Oak M35B $\$ 20$ each, new original N-12 \$65 each. Scientific Atlanta type SA-3 $\$ 69 / \$ 79 / \$ 89 / \$ 109$, Hamlin CRX-6600-3M \$69/\$79/\$89/\$109, Hamlin CRX-6600-3M $\$ 89 / \$ 109 / \$ 129 / \$ 149$, MLD-1200-2 or 3
$\$ 29 / \$ 39 / \$ 49 / \$ 59$, CRX $6600-2 \$ 39 / \$ 49 / \$ 59 / \$ 69$, Eagle PD-3 original $\$ 59 / \$ 64 / \$ 99 / \$ 109$, Interferance Filters, we stock all channels $\$ 12 / \$ 15 / \$ 18 / \$ 29$, Zenith SSAVI-1 Anti-flashing \$89/\$99/\$109/\$129. Pioneer type PI-3 $\$ 79 / \$ 89 / \$ 109 / \$ 129$. Replacement remotes and many accessories in stock. New volume control 78 channel wireless remote converter with parental control and fine tuning capabilities $\$ 79 / \$ 89 / \$ 99 / \$ 109$. B.E.L. radar detector 861 close out $\$ 89$ each.
LASER Listener II, other projects. Surveillance, descrambling, false identification, information. Plans, kits, other strange stuff. Informational package $\$ 3.00$ refundable. DIRIJO/BOND ELECTRONICS, Box 212, Lowell, NC 28098.


Quality Microwave TV Antennas Multi-Channel 1.9 to 2.7 GHz .40 dB gain 30 Channel System complete $\$ 149.95$ 12-Channel System complete $\$ 104.95$ 3 Channel System complete $\$ 79.95$
Phillips-Tech Electronics
P.O. Box 8533 - Scottsdale, AZ 85252
(602) 947-7700 13300 Credit all phone orders!

MasterCard - Visa - COO's Quantity Pricing

DESCRAMBLERS. All brands. Special: Combo Jerrold 400 and SB3 $\$ 165$. Complete cable descrambler kit \$39. Complete satellite descrambler kit \$45. Free catalog. MJM INDUSTRY, Box 531 , Bronx, NY 10461-0531.
T.V. tunable notch filters. Free brochure. D.K. VIDEO, Box 63/6025, Margate, FL 33063. (305) 752-9202.
SURPLUS ELECTRONICS. New giant wholesale catalog. Hundreds of amazing bargains. \$2. Box 840, Champlain, NY 12919.


## Pacific Cable Company, Inc.

7325½ RESEDA BLVD., DEPT.R-11 • RESEDA, CA 91335 (818) 716-5914 • No Collect Calls • (818) 716-5140

IMPORTANT: WHEN CALLING FOR INFORMATION
Please have the make and model \# of the equipment used in your area. Thank You

## FABLE TV CONVERTERS \& EQUIPMENT



ONE UNIT
SCIENTIFIC ATLANTA W/TRI-BI 225.00 . PANASONIC WIRELESS CONVERTER 1403 N
JERROLD 400 COMBO W/ REMOTE (DRX3DIC)
JERROLD 400 OR 450 REMOTE
HAND UNIT
JERROLD JR X 3DIC .
JERROLD SB ADD ON
JERROLD SB ADD ON WITH TRI-BI OAK M-35 COMBO
OAK MINICODE (N-12)
OAK ECONOCODE (E-13)
HAMLIN MLD 1200
SCIENTIFIC ATLANTA SA-3 ADD ON
NTERFERENCE FILTER
(CHANNEL 3 OR 6 )
SCIENTIFIC ATLANTA 83 CHANNEL CONVERTER
PIONEER CONVERTER BA 4500 SERIES .
TOMCOM VIP Call for price $100.00 \ldots 85.00$ ZENITH FLASHING ..... Call for price and availability ZENITH SSAV EAGLE PD-3 Call for price and availability

## VIDEO-LINK Enterprises, Inc.

165 W. PUTNAM AVE. GREENWICH, CT 06830 (203) 622-4386

MONDAY - FRIDAY 10 AM - 5:30 PM, E.S.T.
IMPORTANT: Have make and model \# of the equipment used in your area.

| QTY | ITEM | OUTPUT CHANNEL | PRICE <br> EACH | TOTAL PRICE |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| NO CONNECTICUT SALES. it is not the intent of VIDEO-LINK to defraud any pay television operator and we will not assist any company or individual in doing so. |  |  | SUBTOT. |  |
|  |  |  | Shipping <br> \$3/Unit |  |
|  |  |  | COD: <br> Add 5\% |  |
|  |  |  | TOTAL |  |

$\square$ CASHIER'S CHECK м.O. $\square$ C.O.D. NAME
ADDRESS
CITY/STATE/ZIP
PHONE
SIGNATURE
WAIVER. Since 1 , the undersigned, fully understand that the ownership of a cable decoder does not give the owner of the decoder the right to decode or view premium cable channels without proper authorization from their local cable company, hereby declare under penalty of perjury that all products purchased, at any time, will only be used on cable TV systems with proper authorization from local officials or cable company officers in local officials or cable company officers in
accordance with all applicable federal and state laws. Federal and various state laws provide for substantial criminal and civil penalties for unauthorized use.

Dated:
Signed:
CIRCLE 64 ON FREE INFORMATION CARD


TUBES: "oldest," "latest." Parts and schematics. SASE for lists. STEINMETZ, 7519 Maplewood Ave., RE, Hammond, IN 46324.
CABLE converters and descramblers. Call or write for free catalog. Includes Jerrold, Oak, Zenith, Hamlin, Scientific Atlanta, many more. NU-TEK ELECTRONICS, 5114 Balcones Woods Dr. \#307, Suite 298, Austin, TX 78759-5212. (512) 250-5031.
TUBES, new, up to $90 \%$ off. SASE, KIRBY, 298 West Carmel Drive, Carmel, IN 46032.


ENGINEERING software, PC/MSDOS. Hobbyists - students - engineers. Circuit design, FFT analysis, mathematics, logic simulation, circuit analysis. Free catalog, (614) 491-0832, BSOFT SOFTWARE, 444 Colton Rd., Columbus, OH 43207.
RESTRICTED technical information: Electronic surveillance, schematics, locksmithing, covert sciences, hacking, etc. Huge selection. Free brochures. MENTOR-Z, Drawer 1549, Asbury Park, NJ 07712.

CABLE TV converters and descramblers bargain headquarters! Zenith, Hamlin, Scientific Atlanta, Tocom, Oak, filters. Jerrold 400-DRX3DIC w/remote \$134. Visa-M/CCOD. Order yours today. 1 (800) 327-8544. CABLE TV converters and descramblers. We sell only the best. Low prices. SB-3 $\$ 79.00$. We ship C.0.D. Free catalog. ACE PRODUCTS, PO Box 582, Dept. E, Saco, ME 04072. (207) 967-0726.

[^5]SOUTHWESTERN Bell home, business phone products. Wholesale dealer pricing to all. Cordless phone battery, antennas, more. $\$ 5.00$ refundable, for dealer catalog. RADD, 104 S. Broadway, Peru, IN 46970.

CABLE TV descramblers, Jerrold, Scientific Atlanta, Zenith, most major brands. Dealer inquiries welcome. Visa-M/C accepted. E \& O VIDEO, 9691 E. 265th Street, Elko, MN 55020. 1 (800) 638-6898.
CABLE TV descramblers M35B tested, Varisync available $\$ 39.00$. Rolex President look-alike exact replica, goldtone, quartz movement, mens or womens \$39.00. (818) 982-8931.

FREE power supply, connectors ( $\$ 8.95$ value) with TV project assortment \#103 (February 1984 G. Sync article) contains PCB, TOKO coils, transistors (BFQ85), IC's, diodes, article reprint. $\$ 25.00$. Five $/ \$ 112.50$. Assortment \#104 contains all other parts $\$ 10.00$. Shipping $\$ 3.00$. MC/Visa, COD accepted. JIM RHODES, INC., PO BOX 3421, Bristol, TN 37625.
TEST equipment pre-owned now at affordable prices. Signal generators from $\$ 50.00$. Oscilloscopes from $\$ 50.00$. Other equipment, including manuals available. Send for Catalog. J.B. ELECTRONICS, 3446 Dempster, Skokie, IL 60076. (312) 982-1973.

CABLE descramblers. SA-3 \$89.00, TRI BI \$79.00, Tocom W/R $\$ 235.00$, Z-TAC W/R $\$ 235.00$, MLD $1200-2$ or $3-\$ 45.00$, RTC 56 W/R $\$ 150.00,400$ W R $\$ 125.00$, all makes call (702) 647-3799.
PC-ECAP, AC circuit analysis software for the IBMPC, will calculate and display the frequency and phase response of your circuits. Very easy to use. Completely menu driven. Supports CGA, EGA, and Hercules graphics. High resolution plots on IBM Epson printers. $\$ 99.50$ To order or for info, write CIRCUIT SYSTEMS, 418 Church Road, Sicklerville, NJ 08081.


ACCEPTING new customers again for our monthly picture flyer. Lots of quality electronic surplus parts. STAR-TRONICS, Box 683, McMinnville, OR 97128. KEYBOARD? Phaser-chorus-reverb unit makes little keyboards sound big, using your component stereo system; also guitars. \$88.00. PLEX, HCR 61, Box 6050, Barnes, WI 54873.
RFI suppression ferrites one and two hole beads with misc. assortment ferrite shapes baluns, cups, threaded cores, I.F. bases, coilforms, powdered iron cores, your cost $\$ 19.95$ prepaid in U.S.A.. Postal money order for fast shipment. Your check takes ten days to clear bank. REDELABS, 3405 North Kenicot, Arlington Heights, IL 60004.

## PLANS AND KITS

BUILD this five-digit panel meter and square-wave generator including an ohms, capacitance and frequency meter. Detailed instructions $\$ 2.50$. BAGNALL ELECTRONICS, 179 May, Fairfield, CT 06430.

STEREO FM transmitter!. Transmit your VCR/CD Walkman to any FM stereo radio. One chip does it all! Free schematic and info. Send a self addressed stamped envelope to: DJ INC., 847A Second Ave., Stamped envel 113, New York, NY 10017.
FM transmitter 88 to 108 MHZ kit $\$ 12.95$. SIERRA ELECTRONICS, Box 709, Elfers, FL 34680-0709.
ELECTRONIC kits! Transmitters! Recorders! Phone devices! Bug detectors! Surveillance items! More! Catalog \$1.00: XANDI ELECTRONICS, Box 25647, 60W, Tempe, AZ 85285-5647.

# ANHOUNEING <br> Counter timer <br> module/panel meier <br> - 10 Digit (120. Segment) LCD Display with Gate, Function and input Annunciators: - I Hz to Over 150 MHz Direct Count (1 Hz Iesolution in 1 Sec$)$ - Single Shot Time interval 100 ns, Ins averaged. - Functions include: Frequency Period Ratio, and Time interval and Average. - T6 Segment Analog input Bargraph is driven by an 8 Bit A to D and Can Be Used for Signal Level Display. 



CB tricks booklet. Modifications, tune-ups, channel expansion, clarifier tricks. Send $\$ 19.95$ to MEDICINE MAN CB, PO Box 37, Clarksville, AR 72830.
PRINTED circuit boards etched \& drilled. Free delivery. K \& F ELECTRONICS, INC., 33041 Groesbeck, Fraser, MI 48026. (313) 294-8720.
RADIO astronomy! Monthly magazine, books, components. $\$ 3.00$ brings sample package. BOB'S ELECTRONIC SERVICE, 7605 Deland, Ft. Pierce, FL 34951.
CATALOG: hobby/broadcasting/HAM/CB: Cable TV, transmitters, amplifiers, surveillance devices, computers, more! PANAXIS, Box 130-F11, Paradise, CA 95967.
SURVEILLANCE equipment design gives 58 schematics of Sheffield Electronics surveillance devices. Circuits explained. Transmitters range from pens to one-mile VOX's including crystal, subcarrier, carrier current, infrared, firefly, automobile. Demodulators given. Cube tap and duplex mains powered transmitters presented. Eighteen telephone transmitters are leech and battery types including crystal and subcarrier. Countermeasures chapter. Much more. This $81 / 2 \times 11$ inch 110 -page book is illustrated with photographs. Price $\$ 30.00+\$ 4.00$ S \& H. First class mail U.S. \& Canada. Overseas Airmail S \& H $\$ 9.00$. One-day processing, pay with Money Order or Cashier's Check. Send to: WINSTON ARRINGTON, 7223 Stony Island Ave., Chicago, IL 60649-2806.

INVESTIGATORS, experimenters - Quality new plans. Hard to find micro and restricted devices. Free catalog. Self addressed stamped envelope to KELLEY SECURITY INC., Suite 90, 2531 Sawtelle Blvd., Los Angeles, CA 90064.
CB Tricks II book. Power amplifier design and theory, UHF CB tune ups. Send \$19.95 MEDICINE MAN CB, PO Box 37, Clarksville, AR 72830.

## REMOTE CONTROL KEYCHAIN

 Complete w/mini-transmitter Fund +5 ydc RF racelver Fully assembled including plans to build your own auto alarm
Quantify discounts availabl Quantify discounts available $\$ 19,95$ Add $\$ 3$ shipping VISITECTINC.IDept, $8 .(415)$. $872-0128$ RO BOX 5442, SO.SAN FRAN, CA 94080

## DAZER protector kit \$44.95! Exciting electronic kits! Catalog \$1.00. QUANTUM RESEARCH, 17919-77 Avenue, Edmonton, Alberta T5T 2 S1.

DETECTION - Surveillance, debugging, plans, kits, assembled devices. Latest high-tech catalog \$5. DETECTION SYSTEMS, 2515 E . Thomas, \#16-864F, Phoenix, AZ 85016.
ALPHANUMERIC advertising display. Microprocessor controlled. Eye-catching graphics. Programmable. Stores $6000+$ characters. Detailed plans $\$ 4.50$. PLANET EARTH, PO Box 613 , Edinburg, TX 78540.
ELECTROLOCK programable keypad door release system, complete kit including electric strike release and manual $\$ 129.95$. Brochures and orders: SYsTEMS ASSOCIATES INC., 1320 Cranston Street, Cranston, RI 02920. (401) 943-2986.
KIT catalog - Automotive, Audio, Phone, Sports, Surveillance, Test. Catalog $\$ 1.00$. BALLco, PO Box 1078, Snellville, GA 30278-1078.

## CABLE RENTERS STOP!

Ifyour currently renting your cable equipment it's time to look into owning your own. You can save up to $\$ 100$ plus every year. Satisfaction Guaranteed.

We carry all the major brands of Converters, Remote controls and Descramblers. JERROLD, OAK, ZENITH, EAGLE, HAMLIN, SCIENTIFIC ATLANTA, Many more. Fast courteous service.
Call today 512-250-8816 or write for your Free catalog.
Nis. Nu-Tek Electronic 5114 Balcones Woods dr. Suite\#307 Dept.298R Austin, Tx 78759

PROJECTION TV. Convert your TV to project 7 foot picture... Easy... Results comparable to $\$ 2,500$ projectors... Plans and 8" Lens \$24.95... Professional systems available... Illustrated catalog free... MACROCOMA, 15GB Main Street, Washington Crossing, PA 18977. Creditcard orders 24 Hrs. (215) 736-3979.
SOLAR education kit. Soldering unnecessary. Solar cell drives 0.45 volt electric motor \& fan. Understandable booklet tells how it works and much more. Ages 6 to adult. $\$ 10.00+6 \%$ California residents. Extra cells, $\$ 4.00$ each. Checks only. Quantity discounts. SOLAR WINDS, 1840 Jeffrey Lane, Carmicheal, CA 95608.
BUILD your own PA, Guitar, Bass systems. Product designers for major electronic companies! Consumer direct! Plans: PA's 8-24 channels 4-16 outputs $\$ 19.99$. 32 channels $16-24$ outputs $\$ 29.99$. Stereo rack mount amp 300w, $600 \mathrm{w} \$ 19.99$. Parts, complete kits, additional plans available. M.O., certified check only. DCS, Box 612, Alpha, IL 61413. (309) 667-2553.

## CABLE TV DESCRAMBLERS



1-\$89.00 10-\$69.00 100-Call Last channel recall-Favorite channel select75 channel-Channel scan-Manual fine tuneOne year warranty-surge protection-HRC \& Standard switchable- and much more. Call Today! INFORMATION(402)554-0417

Orders Call Toll Free 1-800-624-1150 M.D. ELECTRONICS 115 NEW YORK MALL SUITE 133E
OMAHA, NE. 68114 CIRCLE 53 ON FREE INFORMATION CARD

## NEW... 1989 EDITION... NEW

The newest systems, parameters, turn-ons, harassment and countermeasures being used by and against cable, wireless and satellite operators. New original information \$15.95. Pay TV Vol. $1 \$ 14.95$. Volume 2 \$12.95. Experiences with VC $\$ 12.95$. MDS/MMDS Handbook $\$ 9.95$. Build Satellite Systems Under $\$ 600$. $\$ 12.95$. Any $3 / \$ 28$ or $6 / \$ 42$. Scrambling News Monthly $\$ 24.95 / y$ r. Sample $\$ 3$. Scrambling News Year 1 ( 200 pages) $\$ 22.95$. New Spring Catalog $\$ 1$ or call.
Scrambling News, 1552 Hertel Ave., buifalo,
N.Y. 14216 COD's 716-874-2088

## SATELLITE TV

CABLE TV secrets - the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc. Supplier's list included \$8.95. CABLE FACTS, Box 711 R, Pataskala, OH 43062.
FREE catalog systems, Upgrades, Houston, Uniden, Chaparral, etc. Save $\$ \$ \$ \$ \$$. SKYVISION, 2009 Collegeway, Fergus Falls, MN 56537. 1 (800) 334-6455.

## SCRAMBLE FACTS 718-343-0130

PHONE TODAY for 3 minutes of satellite TV industry news, technical tips, and new product information.

VIDEOCIPHER II manuals. Volume 1 - hardware, Volume 2 - software. Either $\$ 32.45$. Volume 3 projects/software - $\$ 42.45$. Volume 4 - repair $\$ 97.45$. COD's (602) 782-2316. 0100-032 software. Catalog- $\$ 3.00$. TELECODE, Box $6426-\mathrm{R}$, Yuma, Catalog-\$3.00. ${ }^{\top}$. ${ }^{\text {AZ } 85366-6426 .}$.

DESCRAMBLER: Build our low cost video only, satellite TV descrambler for most satellite channels Uses easy to get, everyday parts. Boards \& plans $\$ 35.00$ US funds. Board, plans \& parts $\$ 99.00$ US funds. Wired \& tested unit $\$ 189.00$ US funds. Send check, money order or Visa to: VALLEY MICRO WAVE ELECTRONICS, Bear River, Nova Scotia Canada B0S 1B0 or phone (902) 467-3577. 8am to 4 pm eastern time. Note: educational project only Not to be used illegally.


DESCRAMBLERS for movies, networks, $\$ 175$, video only, $\$ 450$ complete. Visa, MC accepted. Cata$\log \$ 4$. SKYWATCH, 238 Davenport Road, Toronto, Canada, M5R 1 J 6.

## FOR INVENTORS

INVENTORS! Confused? Need Help? Call IMPAC for free information package. In U.S. and Canada: 1 (800) 225-5800.

## Stop Paying For All Those Catalogs Sent To The 'Current Residents.'

Facts are that a $2 \%$ response to a mailing of Catalogs by a Mail-Order House is considered phenomenal and most Direct Marketing Firms consider a $1 \%$ reply quite adequate. The question is who pays for those 98 to 99 Catalogs that are thrown away as "Junk Mail" or do not generate a response? It is you, as a bonafide customer of the Mail-Order Company who have to pay for the cost of publication and mailing of all those wasted Catalogs. Granted that the Company doesn't bill you directly for its cost but rest assured that you pay for it through higher prices. So when we ask our potential Customers for an annual Membership Fee of $\$ 35$, it is because we want each Customer to pay just for his or her own Catalogs and not for the cost of the other 98 Catalogs going to 'the Current Resident.' And we have had Members who have paid the annual Membership Fees for years without buying anything at all or very little throughout a year. But other Members did not have to pay for their Catalogs. Without having to spend, or better said 'waste', hundreds of thousands of Dollars on production and distribution of unwanted Catalogs, we pass on the savings to you in form of prices that are $20 \%$ to $70 \%$

> 12 Months Saving Guarantee We will refund the first year Membership Fee of any member who has purchased $\$ 300$ or more worth of products from Electronic Buyers Club and has not saved an amount greater than the first year Membership Fee, if buying the same items elsewhere.
lower than elsewhere and our "Savings Guarantee" proves it. So if you buy $\$ 300$ or more a year worth of electronic components stop paying for waste and start saving now. Call us today to become a Member of Electronic Buyers Club.

> 30 Days Money Back Guarantee We will refund the full Membership Fee of any new member of Electronic Buyers Club who within 30 Days after receiving the Membership Binder, returns the Binder to EBC and asks for the cancellation of Membership.

1803 N.W. Lincoln Way • Toledo, OR 97391
PHONE (All 50 States \& Canada): 1-800-325-0101
Mastercord

FAX: (503) 336-4400 • Hours: 6:00 AM - 6:00 PM PST


SPECIALS SPECIALS SPECIALS
MANY MORE TEMS IN STOCX NDD AVALL ABLE FOR F AST DELINERY
CAT ALOG INFORMATION CATALOG FREE VITH ORDER, OR SEND 45 POST AGE FOR IST CLASS DELIVERY WU.S.A. 52 POSTADE FOR CANADA OR CRCLE BNGO CARD NUMBER AT THE BOTTOM OF THIS AD FOR 2 ND CLASS MAIL
TERNS MICRO MART ACCEPTS PRE-PAD ORDERS, CHECKS, MONEY ORDERS, VISA, MC, AND TELEPHONE CDD'S. MINIMUM DRDER $\$ 1000$. SHIPPING-U.S.A CRDERS $\$ 2.50$, CANADA $\$ 350$ AND UP TO ILB. SHPPNG RATE ADJUSTED WHERE APPLICABLE. NJ RESIDENTS ADD 6\% SALES TAX
MICRO MART 508 CENTRAL AVE, WESTFIELD, NJ 07090 1 201-654-6008

CIRCLE 63 ON FREE INFORMATION CARD

## NEW PRODUCTS

continued from page 28
strations are also provided.
"A Video Standard" (catalog number $L D-101$ ) has a suggested retail price of \$59.99.-Reference Recordings, Box 77225X, San Francisco, CA 94107; Tel. 415-359-8721.

CELLULAR-PHONE ACCESSORY. Designed to help drivers avoid the scramble to shut off the car radio when the cellular phone rings, Sound Quest's Silencer turns off the stereo system a moment before the phone rings. Drivers can hear their phones ring more easily, and keep their attention on the road. As soon as the phone is hung up, the music comes on again.

The Silencer is a small black box, about the size of a remote-control unit, that
is hidden behind the car's dashboard. It is available in three models. The basic device simply turns the car stereo on and off. Another model can either turn the stereo on and off, or turn off just the speakers. The third


CIRCLE 17 ON FREE INFORMATION CARD
model is designed for use with high-end stereo systems that have additional amplifiers. It interrupts the stereo signal before it reaches the amplifier.

The Silencer has suggested retail prices ranging from $\$ 39.95$ to $\$ 69.9 .5$. Sound Quest, 2250 Greenfield Ave., North Chicago, IL 60064.

R-E


## Brought To You By MCM Electronics

As an experienced service technician, you too must rely on the tools of your trade to achieve the kinds of professional results your customers have every right to expect.

To get the "tools" you need... when you need them, look no further than the MCM Electronics Catalog. Our huge inventory of more than 11,000 in-stock items, competitive prices, convenient TOLLFREE phone lines, super-fast order processing and flexible payment terms make MCM your best choice for all your parts and components needs.

Get your hands on an MCM Catalog today and find out why thousands of satisfied MCM customers come to us for the "tools" that keep them at the top of their trade!
For Your FREE ONE-YEAR SUBSCRIPTION to the MCM Electronics Catalog... CALL TOLL-FREE 1-800-543-4330


Source No. RE-61

## MCM ELECTRONICS

650 CONGRESS PARK DR.
CENTERVILLE, OH 45459-4072 A PREMIER Company

## AMAZING <br> SCIENTIFIC \& ELECTRONIC PRODUCTS

## PLANS

Build Yourself - All Parts Available in Stock
C7- BURNING CUTIING CO ${ }_{2}$ LASER
RUBA- PORTABLE LASER RAY PISTOL
TCC7-3 SEPARATE TESLA COIL PLANS TO 1.5 ME
OG2- ION RAY GUN
GRA1- GRAVTY GENERATOR
EMLL- ELECTRO MAGNEI COIL GUMLAÜNCHER
KITS
With All Necessary Plans
MFT3K- FM VOICE TRANSMITIER 3 MI RANGE
WWPM 7K - TELEPHONE TRANSMITER 3 MI RANGE
TTC3K-250,000 VOLT 10-14 ${ }^{\text {S }}$ SPARK TESLA CO
HCIE- 100 OOO WAT B ISTIOR DEFESE D
IG7 - NEGATVE ION GENEPATOR KTT DEVCE

STAIK - ALL NEW SPACE AGE ACTIVE PLASMA SABER
SO5K-SEE IN DARK VIEWER KIT
PG5K-PLASMA LIGHTNING GLOBE KIT

## ASSEMBLED

With Al Necessary Instructions

BTCMO- 50.000 VOLT-WORLD'S SMALLEST TESLA COIL GU40- MW H HN VIISIBLE RED LASER GUN ITBO- AUTO TELEPHONE RECORDING DEVICE | INTIMIDATOR |
| :--- |

USTIO- SNOOPER PHONE INENITY TRANSMITE
PG72 PG70- INIISIBEE PANM FIELD
GENERATOR MUTLI MODE
HUNDREDS MORE A GSCRIPIIONS OF ABOVE PLUS PHONE FOR MORE AVAILABLE FOR $\$ 1.00$ OR USE OUR PHONE FOR "ORDERS ONLY" 603-673-4730.
PLEASE INCLUDE $\$ 3.00$ PH ON ALL KITS AND PRODUCTS PLANS ARE POSTAGE PAID. SEND CHECK, MO, VISA, MCIN US FUNDS.
INFORMATION UNLIMITED
P.O. BOX716DEPT.REAMHERST, NH 03031

ON SUB-MINIATURE VOICE FM TRANSMITTERS.
KITS CONTAIN PC BOARDS

-FMX-1 LONG RANGE (3 MI) ULTRA SENSITIVE FM VOICE XMTR with fine tune, range control plus. $\$ 29.50$

-TELX-1 TELEPHONE FM XMTR (3 MI) automatically operates when phone is used. Crystal clear clarity with fine tune and range control Non detectable .$\$ 29.50$

*ATR-1 AUTOMATIC TELEPHONE RECORDING DEVICE tapes telephone conversation all automatically.. $\$ 19.50$ ALL THREE OF ABOVE FOR.................. $\$ 59.50$
CALL OR SEND VISA, MASTER CHARGE, MONEY ORDER, ETC. TO AMAZING CONCEPTS, BOX 716, AMHERST, NH 03031. (603) 673-4730.

## ASSEMBLE YOUR OWN COMPUTER FOR LE\$\$

IBM XT 10 MHz Compatible Kit.............. $\$ 379$

- 4.77/10 MHz Motherboard
- 256KB RAM (640KB max)
- 150W Power Supply
- Floppy Disk Controller
- One $5 \frac{1}{4} 4^{*} 360 \mathrm{~KB}$ Drive
- MonoGraphics Card w/ P
- 101 Key Keyboard
- Case (3LED,2Button,Key)
- $12^{\prime}$ Amber Mono Monitor
- Installation Guide \& Manua


IBM AT 12 MHz Compatible Kit. $\$ 705$ - 8/12 MHz Motherboard

- 512 KB RAM (4 MB max)
- 200W Power Supply
- Floppy Disk Controller
- One $5^{1 / 4^{*}} 1.2$ MB Drive
- MonoGraphics Card w/ P
- 101 Key Keyboard
- Case (3LED,2Button,Key)
- $12^{\prime}$ Amber Mono Monitor
- Installation Guide \& Manua


Display Upgrade:
Hard Drive Option:
CGA Package $\$ 200 \quad$ 20MB w/CTRL XT-\$275 AT-\$315 EGA Package $\$ 455 \quad 30 \mathrm{MB}$ w/CTRL XT- $\$ 310$ AT- $\$ 410$ VGA Package $\$ 500 \quad 40 \mathrm{MB}$ w/CTRL XT- $\$ 390$ AT- $\$ 415$ MS-DOS with GWBASIC $\$ 75$
All Componants Fully Tested Before Ship
VISA \& M/C subject to $3 \%$ surcharge
Price \& Quantity subject to change without prior notice
15\% Restocking Fee on All Items

```
JINCO COMPUTERS INC.
5 1 2 2 ~ W A L N U T ~ G R O V E ~ A V E . ~
SAN GABRIEL, CA }9177
            Tel: (818) 309-1108
            Fax: (818) 309-1107
        IBM, XT, AT are registered trademarks of
            International Business Machine.
```

    CIRCLE 184 ON FREE INFORMATION CARD
    
## EDUCATION \& INSTRUCTION

MAGIC! Four illustrated lessons plus inside information shows you how. We provide almost 50 tricks including equipment for four professional effects You get a binder to keep the materials in, and a oneyear membership in the International Performing Magicians with a plastic membership card that has your name gold-embossed. You get a one-year subscription to our quarterly newsletter "IT's MAGIC!" Order now! \$29.95 for each course $+\$ 3.50$ postage and handling. (New York residents add applicable state and local sales tax). THE MAGIC COURSE 500-B BiCounty Boulevard, Farmingdale, NY 11735.

LEARN IBM PC assembly language. 80 sample programs. Disk \$5. Book \$18. ZIPFAST, Box 12238 , Lexington, KY 40581-2238.
PROGRAM your own computer simulations and learn how to analyze circuits. New periodical will show you how to analyze filters, phase locked loops, etc. Complete with basic subroutines you can use in your own programs. Only $\$ 10.00$ per issue or $\$ 100.00$ for 12 issues. DESIGN LETTERS, PO Box 251, Gaithersburg, MD 20877.

## WANTED

SEISMOMETER wanted to measure earthquakes. Pay cash. D. HUTCHISON, 4000 Little Timber, Edmond, OK 73034. (405) 341-9615.
INVENTIONS/new products/ideas wanted: Call TLCI for free information 1 (800) 468-7200 24 hours/ day - USA/Canada.
WANTED used photofact folders 1800 and up. Write to URIEL REY, 1408 Venustiano Carranza St., Chihuahua, Chih. Mexico.

## ATTENTION CABLE BROKERS

SURPLUS CATV converters and descramblers at wholesale prices. Unmodified units only. Oak M35B $\$ 30$. Jerrold 400DIC w/rem $\$ 80$. (415) 566-9815.

## DESCRAMBLER MODULE

LATEST technology alternative to Jerrold SB-3 or Radio-Electronics Feb. 1984 project. Featuring Radio-Electronics Feb. 1984 project. Featuring
electronic tuning, AGC, auto-on/off, AC/DC power, mini-size, A\&T, and more. For literature - SOUTHTECH DISTRIBUTING, (813) 527-2190

## INVENTORS

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORPORATION for free information. Over a decade of service (800) 338-5656. In Massachusetts or Canada call (413) 568-3753.

## DIGITAL CAR DASHBOARDS

BUILD yourself complete electronic dashboards. Informational package: $\$ 2.00$ (refundable). MODERN LABS, 2900-F Ruisseau, Saint-Elizabeth, QC, JOK 2JO, Canada.

## CABLE T.V. CONVERTERS <br> WHY PAY A HIGH MONTHLY FEE? <br> 

All Jerrold, Oak, Hamlin, Zenith, Scientific Atlanta, Magnavox and all specialized cable equipment available for shipment within 24 hours. For fast service MC / VISA or C.O.D. telephone orders accepted (800) 648-3030 60 Day Guarantee (Quantity Discounts) 8 A.M. to 5 P.M. C.S.T. CLOSED WEEKENDS. Send self-addressed Stamped envelope ( $60 ¢$ postage) for Catalog.

| $\begin{aligned} & \text { mipmest } \\ & \text { LEETRTONICS inc } \end{aligned}$ | P.O. Box 5000 Suite 311 (B) Carpentersville, IL 60110 |
| :---: | :---: |

## BUSINESS OPPORTUNITIES

EASY work! Excellent pay! Assemble products at home. Call for information. (504) 641-8003 Ext. 5192.

MAKE $\$ 50 / \mathrm{hr}$ working evenings or weekends in your own electronics business. Send for free facts. íNDUSTRY, Box 531, Bronx, NY 10461
YOUR own radio station! AM, FM, TV, cable. Licensed/unlicensed. BROADCASTING, Box 130 F11, Paradise, CA 95967.

INVENTIONS, ideas, technology wanted for presentation to industry/exhibition at national innovation exposition. Call 1 (800) 288-IDEA.
ASSEMBLE digital dashboards. Details $\$ 2.00$ MODERN LABS, Digidash Division, 2900 Ruisseau, Saint-Elizabeth, Quebec, JOK 2JO, Canada.
MAKE $\$ 75,000$ to $\$ 250,000$ yearly fixing IBM monitors, no investment, start from home, (a telephone required). Information USA, Canada $\$ 1.00$ Europe, Middle East $\$ 8.00$. RANDALL DISPLAY Box 2168-R, Van Nuys, CA 91404 USA.

PROJECTION TV... Make \$\$\$'s assembling projectors. Easy!... Results comparable to $\$ 2,500$ projectors... Plans, $8^{\prime \prime}$ Lens \& dealers information \$22.50... Professional systems available... Illus trated catalog free. MACROCOMA, 15GBX Main Street, Washington Crossing, PA 18977... Creditcard orders 24 Hrs. (215) 736-2880.

continued from page 73
grated circuits．Try to get the fat Japanese book as well as the thin English one．

Heath Electronics is a brand－ new hacker publication．They are looking for authors，but their pay－ ment rates are chintzy．For more info，contract Ed Mosher at the Heath Buyers Club．

A free printer on spectrum anal－ ysis is available from Tektronix， while Brookfield has lots of free ap－notes available on viscosity measurement and control．

Turning to my own products， I＇ve just finished my new Introduction to PostScript video－ tape，and have now book－on－de－ mand published a series of reprints from my LaserWriter Cor－ ner，originally found over in Computer Shopper magazine．In－ cluded are over three dozen free and unique PostScript fonts．For those of you starting up your own
hacker tech venture，you might want to check into my Incredible Secret Money Machine book．

As always，this is your column and you can get technical help and off－the－wall networking per the Need Help？box．

R－E

## CABLETV DESCRAMBLER LIQUIDATION！

－Major Makes \＆Models！
－Will match or beat anyone＇s prices！
－Dealer discounts at 5 units！
－Examples：
HAMLIN COMBOS
\＄44 ea．（Min．5） OAK ADDION
$\$ 40$ ea．（Min．5） OAK M35B
$\$ 60$ ea．（Min．5）
WEST COAST ELECTRONICS For Information：818－709－1758 Catalogs \＆Orders：800－628－9656

## NEW HE NE

 LASER TUBES \＄35Dealer Inquiries Invited． Free Catalog！
MEREDITH INSTRUMENTS： 6403 N．59th Ave． Glendale，AZ 85301 －（602）934－9387 ＂The Source for Laser Surplus＂


Send for your copy of our 1989 catalog featuring hundreds of electronic components ond unique electronic project kits，．Each of our project kits include all necessary ports and a glass epoxy etched and drilled PC board－you only need to solder in the parts and provide a battery（on bottery operated kits）


CIRCLE 187 ON FREE INFORMATION CARD
18＂EMIINENCE WOOFER
MADE IN USA
100 oz．magnet， $3^{*}$ voice coil． 250 watts RMS， 350 watts max． $80 \mathrm{hm}, 30 \mathrm{~Hz}$ resonant frequency． 22 － 2700 Hz response． Efficiency： 95 dB 1W／1M Paper cone，treated accordian surround．Net weight： 29 lbs ．

| $12^{\prime \prime}$ SUB WOOFER |  |  |
| :---: | :---: | :---: |
| Dual voice coil sub woofer． |  |  |
| 30 oz ．magnet，$z^{\prime \prime}$ voice coils． 100 watts RMS， 145 |  |  |
|  |  |  |
| watts max．if $=25 \mathrm{~Hz} .6$ ohn |  |  |
| （4 and 8 ohm compatible）． |  |  |
| SPL $=89 \mathrm{~dB} 1 \mathrm{~W} / 1 \mathrm{M}$ ． |  |  |
| Response： $25-700 \mathrm{~Hz}$.OTS $=31$, VAS $=10.3 \mathrm{cu} . \mathrm{ft}$ |  |  |
| Pioneer \＃A30GU30－55D． |  |  |
| Net weight： 6 lbs ． |  |  |
| \＃290－145 | （1－3） | (4-up) |
| 15＂THRUSTER WOOFER <br> Thruster by Eminence． |  |  |
|  |  |  |
| Made in USA．Poly foam |  |  |
| surround， 56 oz．magnet． |  |  |
| 2－1／2， 2 layer voice coil． |  |  |
| 150 watts RMS， 210 watts max． 4 ohm. is $=23.5$ |  |  |
| $\mathrm{Hz}, \mathrm{QTS}=.33, \mathrm{VAS}=17.9$ cu ft． $\mathrm{SPL}=94.8 \mathrm{~dB} \mathrm{IW} /$ |  |  |
|  |  |  |
| IM ．Net weight： 15 lbs ． |  |  |
|  | $\$ 43.50$ |  |
| \＃290－180 | $(1-3)$ |  |

GRILL FRAME KIT
With this kit you
can make speaker
grill frames up to
$30^{\circ} \times 40^{\circ}$ ．Kit
includes 4 comer
pieces， 2 T
brackets，and 7
frame bars．Grill
mounting kit
included．
\＃260－333
\＃

## lineco <br> ELECTRONICS

## Mail-Order Alectronios 2man 415-592-8097

> CD-CMOS

## EEPROMS

## $28164.25 .2048 \times 8250$ ns $19 \mathrm{~V} / 5 \mathrm{FV}$ 5V Read Write

$2864 \mathrm{~A} \quad 2048 \times 8$ 350n5 5V Read Write
2864A 30 8192x8 300 ns 5 VV Read Write
$2865 \mathrm{~A} \quad 8192 \times 8250 \mathrm{~ns} 5 \mathrm{~V}$ Read Write


| MISC. COMPONENTS |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TANTALUM CAPACITORS |  |  |  |  |  |  |
|  |  |  |  TM10/35 10 Hf Q 35V |  |  |  |
|  |  |  |  |  |  |  |
| POTENTIOMETERS <br> Values available (insert ohms into space marked "XX") $500 \mathrm{~s}, 1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 200 \mathrm{~K}, 1 \mathrm{MEG}$ |  |  |  |  |  |  |
| 43 PXX 34 Watt.15Tum $.99 \mathrm{l}^{63 \mathrm{PXX}} 1 / 2$ Watt. 1 Tum .89 |  |  |  |  |  |  |
| TRANSISTORS AND DIODES |  |  |  |  |  |  |
| PN2222 | 13 PN | N2907. |  |  |  |  |
|  | 29.2 N |  |  |  |  |  | SWITCHES


| JMT123 SPDT On On 1.19 | 206-8 SPST. 16 pn DIP | 1.25 |
| :--- | :--- | :--- | :--- | :--- | :--- | | D-SUB CONNECTORS |  |  |  |
| :--- | :--- | :--- | :---: |
| DB25P Male. 25-pin $\quad .69$ | DB25S Female, 25-pin | 75 |  |


| XC556R T ${ }^{3}$ 2 Red | 13 X |
| :---: | :---: |
| $56 \mathrm{GT134}$ | - |


|  | IC SOCKETS |  |  |
| :---: | :---: | :---: | :---: |
| Low Protile |  | Wire Wrap (Gold) Love | ol \#2 |
| 8LP | 11 | 8 WW . | 59 |
| 14LP. | 12 | 14 WW | . 65 |
| 16LP | 13 | 16WW | 69 |
| 24LP. | . 25 | 24WW | 1.19 |
| 28LP. | 27 | 28WW | 139 |
| 40LP. | 29 | 40WW | 89 |



| LINEAR |  |  |
| :---: | :---: | :---: |
| TLO71CP | 59 | LM1489N $\quad 45$ |
| TLO72CP |  | DSI4C89N (CMOS) |
| TLO81CP | 49 | LM1871N $\quad 195$ |
| TLO82CP | 49 | $\begin{array}{ll}\text { LM1872N } & 1.95\end{array}$ |
| TLOB4CN | 89 | ULN2003A $\quad 75$ |
| LM301N | 35 | XR2206 $\quad 3.95$ |
| LM307N | 39 | XR2211 |
| LM308N | 25 | XR2240 |
| M310N |  | 26LS29 $\quad 225$ |
| LM311N. |  | 26LS31 - 9 |
| LM317T | 65 | 261533 1.49 |
| LM318N | 99 | ULN2803A $\quad 1.19$ |
| LM319N | 29 | LM2901N |
| LM323K. | 3.49 | LM2907N $\quad 1.29$ |
| LM324N | 135 | LM2917N (8 pin) _-. 1.79 |
| LM3362 |  | MC3470P |
| Lм337T | 1.09 | MC349P |
| Lм338K | 4.49 | MC3487P $\quad 19$ |
| LM339N | 39 | UDN3613M $\quad 39$ |
| LF347N |  | LM3900N $\quad 49$ |
| LF351N | ${ }^{69}$ | LM3905N |
| LF353N | 49 | LM3909N $\quad 89$ |
| LF356N | 79 | NE5532 69 |
| L-358N | 89 | NE5534 69 |
| LM380N | 49 | 7805K (LM340K-5) $\quad 129$ |
| LM386N. 3 |  | 7812 K |
| LM393N | 39 | 7815K (LM340K-15) $\quad 129$ |
| LF398N | 95 | 7805T (LM340T-5) - 45 |
| LF41ICN | 9 | 78121 (LM340-12)-45 |
| LFA12CN | 1.29 |  |
| NES555 |  | 7905K (LM320K-5 - ${ }^{\text {a }}$ |
| XRL555 | 59 | 75113 (M3201- $\quad . \quad 49$ |
| LM565 | 89 | $75150 \quad 119$ |
| LM566CN | 9 | 75154 |
| LM567V |  | 75174 |
| LM723CN | 39 | 75175 |
| LM741CN | 29 | 75176 |
| LM747CN |  | 75451. |
| LM1458N | 35 | 75452 <br> 7549 |
| OS14C88N |  | MC145406P |

## Norldwide • Since $1974 \mid$ 15 and come <br> mionsome

TEST EQUIPMENT
GoldStar 20 MHz Oscilloscope

NEW!


- Large $6^{\prime \prime}$ rectangular display - High sensitivity: 1 $\mathrm{mV} / \mathrm{div} \cdot$ High accuracy: $\pm 3 \%$. Stable, low-drift design - Distortion-free waveform measurements - Special TV sync for quick measurements • Con venient $X$ - $Y$ operation mode
GS7020.
..\$399.95


## Oscilloscope Probes

## - Attenuation: $\times 1 / \times 10$ <br> - Capacitance (LF180) 180pF / 22pF; (LF210)

$180 \mathrm{pF} / 22 \mathrm{pF} ;$
$40 \mathrm{pF} / 17 \mathrm{pF}$
LF180 40 MHz Oscilloscope Probe..... \$19.95 LF210 100 MHz Oscilloscope Probe.... $\$ 29.95$ Metex Digital Multimeters
Metex General Specs:

- Handheld, high accuracy - AC/DC Voltage, AC/DC Cu rent, Resistance, Diodes,
Continuity, Transistor hFE Manual ranging w/overioad Manual ran
protection
M3650/B \& M4650 only: - Also measures frequency - Also measures
and capacita
- Data Hold Switch
- 4.5 Digit


M3610 3.5 Digit Multimeter............... $\$ 49.95$
M3650 3.5 Digit w/Freq. \& Capacitance $\$ 69.95$
M3650B Same as M3650 w/Bargraph..... \$79.95
M4650 4.5 Dig. w/Freq., Capacitance
. $\$ 99.95$

## Metex Autoranging Jumbo

## Readout DMM

- $A C / D C$ Voltage, $A C / D C$

Current, Resistance, Diodes,
Continuity and Frequen
-3.75 Digit ( $8^{\prime \prime}$ High $)$
-3.75 Digit (. $8^{\text {" High) }}$

- Ruggedized,
${ }^{\text {r }}$ - Eassy-to-use pushbutton
- Easy-10-u

M80...................... $\$ 59.95$
A.R.T. EPROM

Programmer

- Programs all current EPROMs in the 2716 to 27512 range plus the X2864 EEPROM - May be
operated by any RS232 port w/ operated by any RS232 port w/
terminal emulation. Fully terminal emulation - Fully intel-
ligent - ASClI command diven
- Menu driven software included
EPP................ $\$ 179.95$
SPECIALI Monochrome Text Card Sperry Monochrome Display Adapter
- IBM PC/XT Compatible
- Allows for Connection
between Computer and
Monochrome Monitor
Monochrome Monito
- Use for Text only
- Use for Text only

Servers and Dedicated
Work Stations
TEXT
$\$ 12.95$

## JAMECO IBM PC/XT 8MHz Turbo Compatible Kit With 256K RAM


 EZDOS MS/PC-DOS Compatible Operating System.................. $\$ 49.95$
EZDOSP Same as above with TrueBASIC..................... . $\$ 69.95$ IBM COMPATIBLE DISPLAY MONITORS


ST225 20 MB Drive only (PC/XT/AT) $\$ 224.95$ ST225XT 20MB w/Controller (PC $\times$ T) ... $\$ 269.95$ ST225AT 20MB w/Controller (AT) ......... $\$ 339.95$ ST238 30 MB Drive only (PCIXT/AT) $\$ 249.95$ | ST238XT |
| :--- | :--- |
| ST2 |
| 30MB wiController (PC/XT) ... $\$ 299.95$ | ST238AT 30 MB w/Controller (AT) ........ $\$ 389.95$ ST225XT Pictured Seagate 40MB and 60MB Hard Disk Drives Also Available! IBM PC/XT/AT COMPATIBLE MOTHERBOARDS



| IBM PC/XT/AT COMPATIBLE 3.5" $5.25^{\prime \prime}$ DISK DRIVES |  |  |
| :---: | :---: | :---: |
| 352KU | 3.5* $720 \mathrm{~KB} \mathrm{(PC/XT/AT)} \mathrm{..........} \$$. |  |
| 356 KU | $3.5{ }^{\text {1 }}$ 1.44MB (PC/XT/AT)........... $\mathbf{\$ 1 2 9 . 9 5}$ |  |
| JE1020 | $5.25^{\circ} 360 \mathrm{~KB}$ (PCXT/AT) Black .... $\mathbf{\$ 8 9 . 9 5}$ |  |
| JE1021 | $5.25^{-360 \mathrm{~KB}}$ (PC/XT/AT) Beige .... $\mathbf{\$ 8 9 . 9 5}$ |  |
| JE1022 | $5.25^{\circ} 1.2 \mathrm{MB}$ (PC/XT/AT) Beige .... $\$ 99.95$ | f. $\begin{gathered}\text { JEictu22 } \\ \text { Pictured }\end{gathered}$ |

## IBM PC/XT/AT COMPATIBLE INTERNAL MODEMS

1200H 1200/300 Baud Internal Modem wMaxMite Comm. Sotware (PCIXT/AT)...... $\$ 69.95$ 2400 H 2400/1200:300 Baud Internal Modem wMaxMite Comm. Stwr (PC AT/AT) S129.95 External Modems and Pocket-Size Modem Also Available!

| PROTOTYPING PRODUCTS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Jameco Solderless Breadboards |  |  |  |  |
|  |  |  |  | - ${ }^{\text {a }}$ |
| Part No. |  | Contact Points | Binding Posts | Price |
| JE20 | $6.5 \times .75$ | 200 | 0 | \$1.95 |
| JE21 | $3.25 \times 2.125$ | 400 | 0 | \$4.95 |
| JE22 | $6.5 \times 1.325$ | 630 | 0 | \$5.95 |
| JE23 | $6.5 \times 2.125$ | 830 | 0 | \$7.95 |
| JE24 | $6.5 \times 3.125$ | 1,360 | 2 | \$12.95 |
| JE25 | $6.5 \times 4.25$ | 1,660 | 3 | \$19.95 |
| JE26 | $6.875 \times 5.75$ | 2,390 |  | \$24.95 |
| JE27 | $7.25 \times 7.5$ | 3,220 | 4 | \$34.95 |

DATAK Photo Etch PCB Kit
Make your own circuit boards! The ER4 photo etch kit contains all the chemicals neces-
sary for any hobbyist, en
gineer or gineer or
student to student to
create pro
fessional circuit boards. Contains: Print frame. tessionato copy film, resist developer, etch resist, 2
phot copper circuit boards, concentrated etchant, film
devileter copper circuit boards, concentrated etchant, fimm
developer and fixer, resist patterns and complete instructions. Must be shipped ground (surface). ER4 Photo Etch PCB Kit..................... $\$ 34.95$

## Jameco Prototype PC Boards

Specs: Laminated
glass epoxy. $062^{\circ}$ thick
2 oz. copper clad with
solder tin finish. All
solder tin finish. All
holes are
holes are . $042^{\prime \prime}$ dia. on
$10^{\prime \prime} \times 10^{\circ}$ grid pattern


JE401 $4.5^{\circ} \times 6.5^{\circ} 1$-sided 3-hole pad pattern ...... $\$ 9.95$ JE403 $4.5^{\circ} \times 6.5^{-} 1$-sided pwr \& gnd busses ....... $\$ 9.95$ JE405 $4.5^{\circ} \times 6.5^{\prime \prime} 1$-sided general purpose ......... $\$ 9.95$ JE407 $5^{\circ} \times 13.25^{\prime \prime} 2$-sided general purpose........ $\$ 19.95$ JE417 $4.2^{2} \times 6.5^{*}$ PC/XT $1 / 2$ card proto board... $\$ 19.95$ JE421 $4.75^{\circ} \times 3.7^{-1}$ IBM PC/XT Card Extender .. \$19.95

| ENGINEERING/DATA BOOKS |  |
| :---: | :---: |
| 21035 | Sams TTL Cookbook (88) ........... \$14.95 |
| 21398 | Sams CMOS Cookbook (88) ........ \$19.95 |
| 22453 | Sams Op-Amp Cookbook (88) ...... \$21.95 |
| 270645 | Intel 8 -bit Controller Hadbk. (89) .... \$19.95 |
| 270646 | Intel 16 -bit Controller Hndbk. (89)... \$19.95 |
| 270647 | Intel 32-bit Controller Hndbk. (89) ... \$19.95 |
| 400041 | NSC Linear Data Book Vol, 1 (88) .. \$14.95 |
| 400042 | NSC Linear Data Book Vol. 2 (88) .... \$9.95 |
| 400043 | NSC Linear Data Book Vol. 3 (88) .... $\$ 9.95$ |
| ICM89 | 1989 IC Master (3 Volume Set) ... \$119.95 |
| EDUCATIONAL KITS |  |
| JE310/315: Fiber optics kits demonstrate the principles of fiber optic system design. Complete step-bystep instructions, theory of operation and tutorial info. incl. |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  | tutorial info incl JE2206: Function generator kit provides JE2206 Pictured three basic waveforms: sine, triangle and square wave. Frequency range: 1 Hz to 100 kHz

JE310 Fiber Optics Experimenter Kit \$19.95 JE315 Advanced Fiber Optics Kit.... \$29.95 JE2206 Function Generator Kit.......... \$19.95

1355 Shoreway Road
Belmont, CA 94002
24 Hour Order Hotline (415) 592-8097 FAX's (415) 592-2503 or (415) 595-2664 Data Sheets - 50 c each
Send \$2.00 Postage for a FREE 1989 CATALOG 1989 Jameco Electronics 11/89
IBM is a registered trademark of

## - $\frac{\text { ameco }}{\text { anter }}$

$\$ 20.00$ Minimum Order - U.S. Funds Only CA Residents Add 6\%, 6.5\% or 7\% Sales Tax Shipping - Add $5 \%$ plus $\$ 1.50$ insurance (May vary according to weight) Terms: Prices subiect to change without notice We are not responsible for typographical errors. We reserve the enght to substitute manulacturers. liems subject to availability and prior sale Products pictured may only be representative

24-Hour Order Hotline (415) 592-8097 • The Following Phone Lines Are Available From 7AM - 5PM P.S.T.
Customer Service (415) 592-8121 - Technical Assistance (415) 592-9990 - Credit Department (415) 592-9983. All Other Inquiries (415) 592-7108

## $\star$ QUALITY PARTS $\star$ DISCOUNT PRICES

## 3 to 6 Vdc MOTOR

 with GEARBOXProbably designed for childs toy. Lever selects 2 forward and one reverse speed. 1st gear aprox. $120 \mathrm{rpm} / 6 \mathrm{vdc}$, 2nd gear aprox 300 rpmbevdc, Reverse aprox $120 \mathrm{rpm} / 6 \mathrm{vdc}$. $3.35^{\prime \prime} \times 1.75^{\prime \prime} \times 3.25^{\prime \prime}$ CAT\# DCM-10 $\$ 6.00$

## SPECIAL !!!

 nickel cadmium BATTERY CHARGER

Rayovacः CH-4
Recharges up to four AA, C, D or two 9 volt nickel cadmium rechargeable batteries. LED charging indicator. CAT\# UNCC $\$ 10.00$ each - 12 for $\$ 108.00$

6 VOLT D.C.
9.5 AMP/HOUR GEL-CELL

Elpower\# 695 6 volt, $9.5 \mathrm{amp} /$ hour rechargeable gel-cell battery. $4.25^{\prime \prime} \times 2.75^{\prime \prime} \times 5.5^{\prime \prime}$ Quick connect terminals.

CAT\# GC-695
\$15.00 each

SOLAR CELL
4 inch square
silicon solar cell. Produces $0.3-0.45$ volts @ 1500 ma in direct sunlight. Solder together in series or parallel for higher voltage or amperage. Ideal for use in solar panels, battery chargers and solar energy products. CAT\# SCEL \$3.50 each 25 for $\$ 75.00$


## LED'S STANDARD JUMBO IFFUSED $T 1-3 / 4$ sizo RED CAT LED 1 RED CATM LED-1 tor $\$ 1.50$ - 100 lor $\$ 13.00$ GREEN CATA LED-2 GREEN CATr LED.2 10 for $\$ 2.00 \cdot 100$ for $\$ 17.00$ YELIOW CATE LED.3 YELLOW CAY\& LED.3 10 for $\$ 2.00-100$ for $\$ 17.00$

 FLASHING LED with buit in flashing circuilacorates on 5 volts. operates on 5 volts...
RED
CAT
S.00 ach $\begin{array}{ll}\text { RED } & \$ 1.00 \text { osch } \\ \text { CATE LED-4 } & 10 \text { for } \$ 9.50 \\ \text { GREEN } & \$ 1.00 \text { asch }\end{array}$ CATE LED-4G 10 for $\$ 9.50$ BI-POLAR LED Lights RED one dirodion, GREEN the ohor. Two loads.
CATII LED-6 2 for $\$ 1.70$ LED HOLDER
Two pioco holder.
CATI HLED 10 lor 65 e RELAYS 12 VOLT D.C. COIL S.P.D.T. Omvona G2E-
335 ohm coil.
335 ohm coil.
$51^{\circ} \times .42 \times .44^{*}$
high
$.61 \times .4 Z \times .44^{*}$ high.
P.C. mount with pins on DIP spacing.
CATE RLY-7a7 $\$ 1.50$ each
5 VOLT DC SIP RELAY Gould, Aliod Con
SR-1A-SVDC
SPST-normally
open SIP reed rolay. 95 ohm coil.
2 amp contacts. $g x$ 20 $x$. 2 amp contacts. $9 \times .25 \times .39^{\circ}$ high. Housing rosists fluorocarbon
and chlorinated commorcial solvents. and chiorinated commorcial soNen
CATH RLY-SIPG
$\$ 1.00$ each - 10 for $\$ 8.50$

## 10 AMP SOLID

 STATE RELAY ELECTROL: S2181CONTROL: CONTROL:
Razed 5.51910 Voc
(will operate on $3-32 \mathrm{Vdc}$ ).
LOAD: 10 amp 9240 Vac
$21 / 4^{*} \times 13 / 4^{-} \times 78^{\circ}$
CATM SSRLY-10B $\$ 9.50$ each
QUANTITY DISCOUNT 50 for $\$ 300.00 \cdot 100$ for $\$ 500.00$

## XENON TUBE $\Rightarrow$

${ }^{1}$ - long flashtube prepped with
$31 / 2^{\prime}$ rod and black loads. Ideal for
CATE FLT-3 2 for 81.00


Opening of door or window pulls pin from alarm module and triggers loud buzzer. Simple installation. Oper ates on 2 AA batteries (not included). Plastic case is $3.32^{\prime \prime} \times 2.29^{\prime \prime} \times 1.19^{\prime \prime}$. lvory with brushed aluminum face. CAT\# DWA \$2.00 each 5 for $\$ 9.00$

## SOUND AND VIDEO

 MODULATORTis UM1381-1. Dosigned for use
with T.L. computers. Can be used wih T.i. computers. Can be use
wih video cameras, games or other audiolvideo soutco. Buit in AB switch onablos usor to switch from T.V. antenna without disconnection. Operates on channe 3 or 4. Requiros 12 Vdo. Hook up diagram included
CATE AVMOD

LIGHT ACTIVATED MOTION SENSOR
This device contains a
photocall which senses
sudden change in
suddon chango in
andient light. Could
bo used as a doot
anunciator or modifiod
to trigor other devices.
$51 / 2^{\circ} \times 4^{-} \mathrm{X} 1$ : Oporatos
on 6 Vdc . Roquires 4 AA ba
CATI LSMD $\$ 5.75$ per unit
1/4 WATT RESISTOR KIT Ideal for the workshop, this
$1 / 4$ watt resistor kl contains 10
plecess each of 42 of the most
popular values ( 420 pleces total). Includes a divided box and a parts locator.
VALUES in this kit are:
1 ohm, 10 ohm, 39 ohm
150 ohm, 180 ohm, 68 ohm, 100 ohm, 130 ohm 560 ohm, $680 \mathrm{ohm}, 1 \mathrm{~K}, 1.2 \mathrm{~K}, 1.5 \mathrm{~K}, 2 \mathrm{~K}, 2.2 \mathrm{~K}, 2.7 \mathrm{~K}$, $3 \mathrm{~K}, 4.7 \mathrm{~K}, 5.1 \mathrm{~K}, 5.6 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 22 \mathrm{~K}, 30 \mathrm{~K}, 33 \mathrm{~K}, 39 \mathrm{~K}$ $47 \mathrm{~K}, 56 \mathrm{~K}, 68 \mathrm{~K}, 100 \mathrm{~K}, 120 \mathrm{~K}, 150 \mathrm{~K}, 220 \mathrm{~K}, 470 \mathrm{~K}$, 1 MEG, 5.1 MEG, 10 MEG
The featitors alone would sell for $\$ 21.00$.
Comploto kit - CAT\# REKIT-14 $\$ 17.00$

## PIEZO

 WARNING DEVICE

Murata Erio : PKBB-4AO High pitchod audblo alarm. Oporates on $3-20 \mathrm{Vdo}$ © $20 \mathrm{ma} .1^{-}$ high $\times 7 / 6^{-1}$ dia. P.C. board mount. CATE PBZ-84 $\$ 1.75$ each

NICKEL-CAD
BATTERIES
(RECHARGEABLE)
SPECIALII AAA SIZE
Panasonice P-18AAA 1.2 vol -180 MAh CATE NCB-AAAX $\$ 1.50$ sach 10 for $\$ 13.50$ - 100 for $\$ 125.00$


AA SIZE $\$ 2.00$ each CATA NCB-AA AASIZE $\$ 220$ each MA SIZE $\$ 2.20$ each
WITH SOLDER TABS WITH SOLDER TABS CSIZE \$4.25 EACH C SIZE $\$ 4.25$ EACH
1.2 volts 1200 mAh 1.2 volts 1200 mAh
CATA NCB-C D SIZE $\$ 4.50$ oach CAT: NCB-D

TRANSISTORS
ORDER BY PART:
PN2222 NPN
TO-92 5 for 75 c
PN2907 PNP
TO-92 5 for 75 e
2N3055 NPN
TO-3 $\$ 1.00$ each
MJ2955 PNP
TO-3 \$1.50 each MJE2955T PNP
TO-220 75¢ each MJE3055T NPN
TO-220 75 ceach TIP31 NPN
TO-220 $75 ¢$ each TIP32 PNP TO-220 75c each TIP121 NPN TO-220 75c each TIP126 PNP TO-220 75c each

WIDE BAND AMPLIFIER NEC: UPC1651G. 1200 Mhz © 3 db . Gain: 10 db © 1 f $500 \mathrm{hz}, 5$ volt oporation. Small package 4 mm dia. $\times 2.5 \mathrm{~mm}$ thick. CATM UPC-1651 2 for $\$ 1.00$ 10 for $\$ 4.50$ - 100 for $\$ 35.00$
N-CHANNEL MOSFET IRF-511 TO-220030 CATH IRF 511
\$1.00 asch - 10 for $\$ 9.00$ LANGE CUANIITY AVAILABLE

STROBE KIT

14.7 VOLT TRANSFORMER Sprite Industries: CS-510A. 14.7 volt, $60 \mathrm{hz}, 8.82 \mathrm{Va}$. $1.61^{\prime \prime}$ high X $1.95^{-} \mathrm{X}$ 1.61 high $\times 1.95 \times$ 1.47. Mounting holes on 2.32 centers. CAT\# TX-147 $\$ 3.00$ each 10 for $\$ 27.00$. 100 for $\$ 250.00$

## CALL OR

 WRITE FOR OUR FREE CATALOG OVER 4000 PARTS!

MAIL ORDERS TO: ALL ELECTRONICS

## P.O. BOX 567

VAN NUYS, CA 91408
TWX-5101010163 (ALL ELECTRONIC)
OUTSIDE THE U.S.A.
SEND \$2.00 POSTAGE
FOR A CATALOG!!

ORDER TOLL FREE 800-826-5432
INFO: (818)904-0524
FAX: (818)781-2653 MINIMUM ORDER $\$ 10.00$ QUANTITIES LIMITED
CALIF. ADD SALES TAX USA: $\$ 3.00$ SHIPPING FOREIGN ORDERS INCLUDE SUFFICIENT SHIPPING. NO C.O.D.

# What's New at AMERICAN DESIGN COMPONENTS? 

The "First Source" for the
Tinkerer, Teacher, Hobbyist, Technician, Manufacturer, Engineer

V ${ }^{\text {e warehouse }} 60,000$ items at American Design Componentsexpensive, often hard-to-find components for sale at a fraction of their original cost|
Call Toll Free: (800) 776-3700
THERE'S NO RISK! With our 90-day warranty, any purchase can be returned for any reason for full credit or refund.


HELIUM-NEON
LASER 2 mW

Delivers

## 2 mW of 632.8

NM light. Laser head
\& associated electronics are integrated into a single compact unit. Ideal for holography \& entertainment applications (light shows, etc.). Req. $12 \mathrm{~V} @ 1 \mathrm{~A}$ adaptor. Mfd. in Ger many. Dimen.: $15^{\prime \prime} \mathrm{L} \times 21 / 2^{\prime \prime} \mathrm{H} \times 21 / 2^{\prime \prime} \mathrm{D}$

Item \#22726 Now - \$175.00
$\star$ 12V Power Supply
(Requires compatible plug.)
Item \#19589 \$9.95
14" COLOR MONITOR (CGA - IBM Compatible!)

## Input:

115/230V,
50/60 Hertz
(automatically
switchable). Resolution: $640 \times 240$ (RGBhorizontal x vertical). Complete with CGA card and IBM interface cables. Built-in stand. Dot pitch: .31.
Mfr - Hitachi; made for Data General. Item \#22475
Special Offer
$31 / 2^{\prime \prime}, 20 \mathrm{Mb}$., HALFHEIGHT HARD DISK DRIVE
(ST225 Compatible)
Universal $51 / 4^{-4}$ mounting. For PC/XT/AT compatible computers. Average access time: 62 msec . Average access ite:
Item $\pm 15853$ RFE - $\mathbf{\$ 1 7 9 . 0 0}$
Western Digital Controller Card For above drive.

Item \#10150 \$89.00 51/4" FULL-HEIGHT
DISK DRIVE
${ }^{\left(I B M^{\circ}\right.}$ Compat.)


48 TPI, 40 Track,
Double Side/Double Density Mfr.- CDC 9409 T

Item $\# 7928$ \$79.00 New 2 for $\$ 150.00 \mathrm{New}$

1200-BAUD MODEM
Operates at 300 \& 1200 baud.
Bell 103,
212A; CCIT
V. 22 com
patible.
Built-in
MNP
MNP.
Internal
speaker, error
correction. RS-232C cable connects unit to your computer. 7 status lights, volume control, AC \& 2 phone jacks, incl. AC plug \& phone wire. (Mfrs' Close Outl) Microcom SX/1200
Item \#24034 New - \$59.95

## CAMCORDER



Will accommodate the following cameras: Matsushita, Panasonic, GE, Quasar, Magnavox, Sylvania, NEC, \& Phico. Lightweight, black molded plastic; shoulder strap ind. OA Dim: $17^{\top} \mathrm{W} \times 11^{*} \mathrm{Hx}$ deep. Mr - Travel Master \#TC-1711

Hem 222909 Now - \$19 9

ADAM
51/4" DISK

## DRIVE

Gives your Adam fast, reliable data storage \& retrieval. Can hold up to 160 Kb of information. Uses indus-try-standard SS/DD disks. Connects directly to your Adam memory console. Manager disk \& owner's manual. Manager disk \& owners man
Mir - Coleco, model 7817. Item $\# 12830$ - New

Special - \$175.00 DATA DRIVE \#6641 \$19.95 PRINTER POWER SUPPLY

Item \#6642 \$14.95 ASCII KEYBOARD

Item \#6643 \$19.95 CONTROLLERS (Set of 4

Item \#7013 \$9.95 RFE ADAM CASSETTES Incl. Smart Basic, Buck Rogers \& blank cassette. Item "77786

Baker's Dozen - \$19.95 NEW BLANK TAPES
Hem.\#20868 4 for $\$ 10.00$ SMART BASIC PROG. MANUAL liem \#20875 New - \$14.95 ADAM SOFTWARE SET
Includes Expertype, Recipe Filer;Smart
lom \#21746 New -
ER

## "High Resolution"

IBM Compatible!
Capable of running MS/DOS 3.2
256K, expandable (chips must be hard-wired in). Complete with $15^{\prime \prime}$ monochrome monitor (amber), 93-key Swedish keyboard (most characters are in English).
(Disk drives not included!) Uses 1 or 2 DS/Quad
"Graphics Capability"
Can be used with ADC's Disk Drive Chassis, item \#14541, \& DS/Quad Density Disk Drive, item \#1893 (see ad at right).
Manufactured for Compis in Sweden. Operates on 115 or 230 V . Built-in printer output (serial or parallel). Hookup diagram included!

Item \#21934
New - \$199.00
(Manufac s' closeout -

JVC 20Mb INTERNAL TAPE BACK-UP w/CONTROLLER


Includes Sysgen Interface Card (\#3044-001), manuals \& software. JVC \#MTD-520H
Item \#23821 New - $\$ 199.00$
12VDC FANS.
Cooling applications: RVs, campers, boats, computers \& electronic equip.
Ball bearing. plastic blades, aluminum housing.

102CFM
Muffin ${ }^{\text {© }}$
Dim.: $4.7^{7} \times 1 / 5^{\circ}$ deep
IMC $\quad 4715 \mathrm{PL}$-04W-B30
Item \#23724 New-\$14.95
21CFM Sprite ${ }^{\circ}$
Dim.: 3.1 ${ }^{1} \times 1.0^{\circ}$ thin
IMC *3110PL-04W-B20
ltem *23978 New-\$9.95
EXTERNAL DISK DRIVE
CHASSIS W/60W power supply (Fan cooled Disk drives
not incl.).

Can
accommodate:
2 full-height drives
2 floppy drives; or 1 haro
drive \& 1 flopgy drive. Input: $115 / 230 \mathrm{~V}$, $50 / 60 \mathrm{~Hz}$. Ong. for Burroughs computer. Dim.: $11 \times 8^{\circ} \mathrm{H} \times 12^{\circ} \mathrm{D}$

Item \#14541 \$59.50
${ }^{*}$ Chassis w/One 5-1/4
DS/Quad Density 720K Drive
Items \#14541 + \#1893 \$139.00

## Come visit our newly opened Retail Store \& Showroom...

## We carry a complete line of Computer \& Game Equipment and Accessories

PC to PC CONNECTION.


COMPATIBLE
$\star 0-256 \mathrm{~Kb}$ memory in 64 Kb increments * Fully socketed for easy upgrade
$\star$ Memdisk: Simulates high-speed disk in RAM memory
$\star$ Allows you to print while using the computer $\star$ Software included
Techmar \#MU203010 (w/o RAM)
Item \#19977 New - \$29.95
$\star 64 \mathrm{~Kb}$ RAM Upgrade
Set of 9 chips... Item \#19983 \$17.50

PC/XT/AT Compatible High Resolution ENHANCED LAYOUT 101-KEY KEYBOARD

$\star 12$ Function Keys
$\star$ Separate Numerical Cursor $\star$ LED indicators for Scroll 1" * $1^{\prime \prime}$ inclination Foot Stand Mfr. \#29079
Item \#19680 New - \$49.95
(Open Frame)

$9^{\prime \prime}-12 \mathrm{VDC}$
Green phosphor. Schematic incl Audiotronics \#900961-11

Electronic Instant Ignition

## MICRO TORCH

## - Hand Held

I. 02. Refillable 1.58 fl. oz. Butane Gas Tank Can be used in a wide range of applications: elect. installations, welding, shrink tubing; jewelry \& toy repairs, de-freezing pipes, etc. Precise \& cont-
rolled hi-temp, flame max ${ }^{1300^{\circ} \mathrm{C} / 2370^{\circ} \mathrm{F} \text {. Flame ad }-1 / 2 \text { to 1-12. }}$ Working time: about 2 hrs. Metal 1-1/2 Working time: about 2 hrs. Metal stand included. Dim.: 6-1/4* $\mathrm{H} \times 1-3 / 16^{\circ}$ diameter.
Mir - Vulcan ${ }^{* 20}$. Mir - Vulcan ${ }^{\text {\#20 }}$

MULTI-ACCESS REMOTE CONTROL

One remote controls your TV, VCR \& Cable
 Converters!

## Oper-

ates by
infrared signals,
this wireless remote elimin-
ates the need for 2 or 3 boxes. Operates all major brands of TVs. Easily programmed by setting 2 sets of DIP switches. Gemini $\begin{aligned} & \text { MAC10 }\end{aligned}$
Item \#24055 New-\$49.95
AMERICAN DESIGN COMPONENTS, 815 FAIRVIEW AVE., P.O. BOX 220, FAIRVIEW, N.J. 07022 MINIMUM

## YES! Please send me the following items-



For all phone orders, call TOLL FREE 800-776-3700. In New Jersey call (201) 941-5000.

## MARK V ELECTRONICS，INC．

Gives you more selection in Electronic Kits，Power Amplifiers，Test Instruments and Professional Products． $\boldsymbol{\Delta}$ indicates the level of difficulty in the assembling of our Products． $\boldsymbol{\Delta}$ Beginner $\boldsymbol{\Delta} \boldsymbol{\Delta}$ Intermediate $\boldsymbol{\Delta} \boldsymbol{\Delta} \boldsymbol{\Delta}$ Advanced $\star$ Fully Assembled

PROFESSIONAL COLOR LIGHT
CONTROLLER SM－328 ネ


Assembled \＆tested $\$ 150.00$ The SM－328 profes－ sional color light con－ troller is keyboard programmable forease of use，it allows full control of intensity and flash rate．It has four separate channels with capacity of 1170 watts per channel．Total wattage capability is 4.68 killowatts．This is equivalent to bulbs or 9365 －watt colored bulbs and is sufficient for the largest halls and auditoriums．－Independent input signal control－Professional styled control panel－ 4 independent outputs $\bullet 4$ independent dimmer controls －Chaser speed controls • Automatic chaser operation －Chaser speed controls－Automatic chaser operation － 4 preset chaser programs e Cloc
SPECIFICATIONS：Input sensitivity（music model）： 100 mV ，（music \＆program）： 2 V • Output power： 1170W per channel 4680 W total＊Power require－ ment： $105-120 \mathrm{~V}, 60 \mathrm{hz}$ • Dimensions： $14.32^{\prime \prime}$ wide， $9^{\prime \prime}$ high， $3.19^{\prime \prime}$ deep．

## MULTIPURPOSE MELODY GENERATOR

 TA－50A／B／CTA－SOA／B conden astion TASOC condinata aizes

The TA－50 melody gencrator uses the latest CMOS ROM techno－ logy．It plays 8 to 10 different tunes depending on the model．It operates on two AA size batteries due to its small current demand． You can adapt the generators to door bells，musical boxes，electronic clock alarms and many more．There are three models to choose from as listed below． SPECIFICATIONS：Output power： 500 mW －Out－ put impedance： 4 to 80 hms －Power requirements． 5 volts DC 9100 ma －Dimensions： $2.8^{\prime \prime} x$ $2.4^{\prime \prime} \times 0.6^{\prime \prime}$ th TA－50A－Jingle Bell，Silent Night，Rudolph The Rednosed Reindeer， 0 Come，All Ye Faithful，Santa Claus Is Coming To Town，Joy To The World，I Wish You A Merry Christmas，Hark． Town，Joy To The World，I
The Herald Angels Sing．
The Herald Angels Sing．
London Bridge is Falling Down，Are You Sleep－ ing，Joy Symphony，Wiegenlied，Row Your Boat，Happy Birthday，Home Sweet Home，Melody on Purple，Bamboo． TA－50C－L＇eau Vive（Living Water），Home on the Range， Romance De Amnor，Comin＇Thro＇The Rye，Wedding March，
Happy Birthday，Humoresque，Lorelei，The Last Rose of Happy Birthday，Humoresque，Lorelei，The Last Rose of Summer，Love Song From Sikang
300W HI－FI POWER AMPLIFIER（MONO） TA－3600 A A

Assembled \＆tested $\$ 110.00$
Completed Kit $\mathbf{\$ 8 6 . 0 0}$ Transformer $\mathbf{\$ 3 8 . 0 0}$ 10,000 UF 80V E．Cap $\$ \mathbf{2 0 . 0 0}$ The TA－3600 is an extremely high power amplifier specifi－ cally designed to reproduce the high dynamic range available on compact discs．It has low noise，high stability， low distortion，extended fre－ quency range and high efficiency in a compact package． Two of these units with appropriate power supply and pre－amplifier are required for stereo reproduction． SPECIFICATION：Power output： 300 watts sine wave 540 watts music power e Frequency response： Total harmonic distortion：Less than 0．05\％ －Sensitivity 1 Vms at 47 K －Power requirements： 60 to 75 VDC at 8 amp ．



DYNAMIC NOISE REDUCTION UNIT SM－666 $\Delta$ Complete kit $\$ 26.00$ ，Assembled \＆tested $\$ 34.00$ The SM－666 Dynamic Noise Reduction Unit is designed to reduce noise during playback from casette tapes，LP records and compact discs，as well as FM radio broadcasts．An National Sem－ iconductor LM1894 integrated circuit is used to achieve a noise reduction of 10dB．The SM－666 has the great ad－ vantage that it can be used with all musical formats on playback whereas existing noise reduction systems such as Dolby B and C operate with magnetic tapes only．The output of the unit is connected directly to the system amplifier input
as shown in the schematic．The unit can be switched out or as shown in the schematic．The unit can be switched out or bypassed if desired in order to compare the noise reduction advantage when playing a noise signal．
MAX $\bullet 20 \mathrm{Kohm}$－Noise reduction：10 dB－Power supply： 9 to 12 V recommended－Operating cur－ rent： 27 mA MAX


MYNAH 8504
1．Talk．Push button for voice announcement of time．2．Read out：Twelve hours system dispiay for hour，minute，second（by color flash），AM．\＆PM．3．Display．Three display modes of
time，alarm time \＆date 4．Alarm：On／off switch with thirty seconds voice alarm．5．Snooze：Reminder voice alarm of thirty seconds after 4 minutes of first voical alarm．6．Volume： Two level of voice output．7．Language available：English PARROT 8501 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\＄12．00 MYNAH 8504 $\$ 12.00$（NOT A KIT）
STEREO PRE－MAIN AMPLIFIER $100 W \times 2$ CLASS＂A＂DC


TA－1500 A A A Complete kit $\$ 73.70$ Assembled \＆tested $\$ 95.81$ The TA－1500 amplifier is a stereo pre－amplifier and power amplifier featuring in the pre－amplifier section．A fully regulated power supply insures stable，low distortion operation of this section．The output transistors and direct coupled circuit configuration． The output transistors are fully protected by an automatic bias circuit and the loudspeakers are fully protected against damage by a fast acting speaker disconnect relay circuit．An additional feature，not found on many similar amplifiers，is provision to use a microphone with the amplifier． This amplifier requires only the addition of an external power transformer for a fully operational unit．
SPECIFICATIONS ：Power output： 80 watts per channel into $80 \mathrm{hms}, 100$ watts per channel into 40hms ：Total harmonic distortion：Less than
$0.03 \%$－Frequencv response：Aux input， 5 to $0.03 \%$ Frequencv response：Aux input， 5 to
$50,000 \mathrm{hz}+0.2 \mathrm{~dB},+2 \mathrm{~dB}$－Frequency response： Sower amplifier section，DC to 200 khz －Sensiti－
Pow vity：Phono： 2.5 mV ＠ 47 K, Aux： $150 \mathrm{mV} @ 47 \mathrm{~K}$ ，Mic： 6 mV ＠ 10 K －Output：Tape： 150 mV ＠ 47 K ，Pre－ amp： $1 \mathrm{~V} @ 600 \mathrm{ohms}$－Power transformer： 26 V to
$32 \mathrm{~V} A C \times 2 @ 6 \mathrm{~A}$

## COLOR LIGHT CONTROLLER

TY－23B $\Delta \Delta \Delta \star \quad$ Complete kit $\$ 71.50$


Assembled 8
tested $\$ 82.50$
As a result of the advanced technology，tnis unit can control is most suitable in places like party，disco，electronic game centre and also in lightings for advertisements．Total output power is $3000 \mathrm{~W}(1000 \mathrm{~W} / \mathrm{Ch}$ ）which can control 30 pieces of 100 W or 600 pieces of 5 W color light bulbs．
FEATURES：1．＂Music＂mode，Audio signal is divided into high，middle and low frequency to drive 3 groups of lights，it has independent controller for
sensitivity．2．＂Chasing＂mode，Electronic circuit automatically controls 3 groups of color lights in sequential ON and OFF，also it has a speed con－ troller and shelf－program＂Chasing Mode＂on the
P．C．Board． P．C．Board．
－WE ACCEPT MAJOR CREDIT CARDS，MONEY ORDERS AND CHECKS－BUSINESS \＆SHOWROOM HOURS：（PACIFIC TIME）MON．－FRI．9：30 A．M．－ $5: 00$ P．M．，SAT．10：00 AM．－ $5: 00$ P．M．TERMS：$\$ 10.00$ MIN．ORDER
USA
USA SALE $\cdot$ PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE O WE ARE NOT RESPONSIBLE FOR TYPOGRAPHICAL ERRORS

| MEMORY |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| DYNAMIC RAMS |  |  |  |  |
| PART: | SIZE | SPEED | PINS | PRICE |
| 41164-150 | $65536 \times 1$ | ${ }^{1500 n}$ | 16 16 | .99 2.49 |
| 4164-120 | $65536 \times 1$ | 120 ns | 16 | 2.89 |
| 4164-100 | $65536 \times 1$ | 100 ns | 16 | 3.39 |
| TMS4464-12 | $65536 \times 4$ | 120 ns | 16 | 9.95 |
| 41256-150 | $262144 \times 1$ | $150 n 5$ | 16 | 4.49 |
| 41256-120 | $262144 \times 1$ | 120 ns | 16 | 4.99 |
| 41256-100 | $262144 \times 1$ | 100 ns | 16 | 5.49 |
| 41256-80 | $262144 \times 1$ | 80 ns | 16 | 5.99 |
| 41256-60 | $262144 \times 1$ | 60 ns | 16 | 7.99 |
| 414256-100 | $262144 \times 4$ | 100ns | 20 | 14.95 |
| 414256-80 | $262144 \times 4$ | 80 ns | 20 | 16.95 |
| $1 \mathrm{MB-120}$ | 1048576x1 | 120 ns | 18 | 13.95 |
| 1 MB-100 | 1048576x1 | 100 ns | 18 | 14.95 |
| $1 \mathrm{MB}-80$ | 1048576x1 | 80ns | 18 | 15.95 |
| SIMM MODULES |  |  |  |  |
| PARTE | SIZE | SPEED | FOR | PRICE |
| 41256A9B-12 | $256 \mathrm{~K} \times 9$ | 120 ns | PC | 59.95 |
| 41256A9B-80 | $256 \mathrm{~K} \times 9$ | 80 ns | PC | 69.95 |
| 421000A8B-10 | $1 \mathrm{MB} \times 8$ | 100 ns | MAC | 169.95 |
| 421000 A9B-10 | $1 \mathrm{MB} \times 9$ | 100ns | PC | 169.95 |
| 421000A9B-80 | $1 \mathrm{MB} \times 9$ | 80 ns | PC | 179.95 |
| STATIC RAMS |  |  |  |  |
| PART: | SIZE | SPEED | PINS | PRICE |
| TMM2016-150 | 2048×8 | 150 ns | 24 | 3.25 |
| HM6116LP-2 | 2048×8 | 120 ns | 24 | 5.49 |
| HM6264LP-15 | 8192x8 | ${ }^{150 n s}$ | ${ }^{28}$ | 8.95 |
| HM6264LP-12 | $8192 \times 8$ | 120 ns | 28 | 9.95 |
| HM43256LP. 15 | 32768×8 | 150 ns | 28 | 19.95 |
| HM43256LP-12 | $32768 \times 8$ | 120 ns | 28 | 21.95 |
| HM43256LP-10 | 32768×8 | 100ns | 28 | 24.95 |



This month's topic is floppy drive compatibility. There are $360 \mathrm{~K} 5-1 / 4^{*}, 720 \mathrm{~K} 3-1 / 2^{*}, 1.2 \mathrm{Meg} 5-1 / 4^{4}$ and $1.44 \mathrm{Meg} 3.1 / 2^{*}$ drives, any of which can be used on most PC's and PC clones. Recent Improvements in floppy controllers make using high density drives on soss-based machines a viable option. To simplity, we'll eliminate the redundant choices. A 1.2 Meg drive can work with both high density 1.2 Meg flopples and low density 360 K floppies." A high density $3-1 / 2 * 1.44 \mathrm{Meg}$ drive can use both the high density 1.44 Meg and the low density 720 K disks. Unless you know that you will never need high densily capability, a good universal standard is one $3-1 / 2^{\prime}$ and one 5-1/4' high density drive.
Now for the bomb Big Blue uses a different method to distinguish between 720 K and 1.44 Meg drives. While most of the manufacturers look for and defect the High Density hole in a high density diskette, they read the data to make that determination. This causes a problem when a Low Densily disk wilthout the hole is written in the high densily mode. So il you get a $3-1 / 2^{*}$ disk that a friend says is formatted at 1.44 Meg . make sure it has a High Densily hole or it probably won't read in your clone

Derick Moore, Director of Engineering witten in a 1.2 Meg drive and is then read in a 360 K drive

EPROMS

## MATH COPROCESSORS <br> 

74 SERIES LOGIC

74LS32
7474
74LS74
74S74
74LS138
74LS155
74LS163
74LS240
74LS244

74LS245
74LS273
74S288 74S288
74LS322 74LS322
74LS 367 74LS3367
74LS373
74LS374
74LS393
74LS682
74LS688

## C.P.U.'s

| MISC |  |
| :---: | :---: |
| Pacosoo | ${ }^{3.29}$ |
| Coms116 | ${ }_{8.95}^{9.95}$ |
| MC146818 | 55 |
| Mm581 | 5 |
| ins |  |
| NS16450 | 10.95 |
| M, |  |
|  | 29 |
| 78 | 49 |
| ${ }^{7812 T}$ | 9 |
| 75150 | 1.95 |
| ${ }_{75154}$ | 1.95 |
| 14 |  |
| crystal |  |
| oscillat | OR |
|  | ${ }_{5}^{5.95}$ |
|  | 4.95 |
| ${ }_{24.0}^{20.0}$ | 4.9 |


\section*{PALS} | 1668 | 2.95 |
| :--- | :--- |
| 11684 | 2.95 |
| 11666 | 2.95 |
| $16 R 8$ | 2.95 |


|  | EPROMS |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PART\# | SIZE | SPEEd | Vpp | PINS | Price |
| 2708 | $1024 \times 8$ | 450 ns | 25 V | 24 | 4.95 |
| 2716 | $2048 \times 8$ | 450 ns | 25 V | 24 | 3.49 |
| 2716-1 | 2048×8 | 350ns | 25 V | 24 | 3.95 |
| 2732 A | 4096x8 | 250 ns | 21 V | 24 | 3.95 |
| 2764 | $8192 \times 8$ | 450 ns | 12.5 V | 28 | 3.49 |
| 2764-250 | 8192x8 | 250ns | 12.5 V | 28 | 3.69 |
| 2764-200 | 8192×8 | 200 ns | 12.5 V | 28 | 4.25 |
| 27 C 64 | 8192×8 | 250 ns | 12.5 V | 28 | 4.95 |
| 27128 | $16384 \times 8$ | 250 ns | 12.5 V | 28 | 4.25 |
| 27128A-200 | $16384 \times 8$ | 200 s | 12.5 V | 28 | 5.95 |
| 27256 | $32768 \times 8$ | $250 n 5$ | 12.5 V | 28 | 4.95 |
| 27256-200 | 32768×8 | 200 ns | 12.5 V | 28 | 5.95 |
| 27 C 256 | 32768×8 | 250 ns | 12.5 V | 28 | 5.95 |
| 27512 | $65536 \times 8$ | 250 ns | 12.5 V | ${ }^{28}$ | 8.95 |
| 27 C 512 | 65536x8 | 250 ns | 12.5 V | 28 | 9.95 |
| 27C101-20 | $131072 \times 8$ | 200ns | 12.5 V | 32 | 29.95 |

## PROTOTYPE CARDS

FR-4 EPOXY GLASS LAMINATE WITH GOLD PLATED
EDGECARD FINGERS AND SILK SCREENED LEGENDS


| FOR XT |  |  |
| :---: | :---: | :---: |
| JDR-PR1 | WITH +5V AND GROUND PLANE | 27.95 |
| JDR-PR2 | ABOVE WITH IO DECODING LAYOUT | 29.95 |
| JDR-PR2-PK | PARTS KIT FOR JDR-PR2 ABOVE | 8.95 |
| FOR AT |  |  |
| JDR-PR10 | BIT WITH I/O DECODING LAYOUT | 34.95 |
| JDR-PR10-PK | PARTS KIT FOR JDR-PR10 ABOVE | 12.95 |
| FOR PS/2 |  |  |
| JDA-PR32 | 32 BIT PROTOTYPE CARD | 69.95 |
| JDR-PR16 | 16 BIT WITH I/O DECODING LAYOUT | 49.95 |
| JDR-PR16-PK | PARTS KIT FOR JDR-PR16 ABOVE | 15.95 |
| JDR-PR16V | 16 BIT FOR VIDEO APPLICATIONS | 39.95 |
| EXTENDER CARDS |  |  |
| SIMPLIFY PROTOTYPING AND TESTING |  |  |
| EXT-8088 | 8-BIT FOR 8088 MOTHERBOARDS | 29.95 |
| EXT-80286 | 16-BIT FOR 286/386 MOTHERBOARDS | 39.95 |
| EXT-16 | MICROCHANNEL 16-BIT | 69.95 |
| EXT-32 | MICROCHANNEL 32-BIT | 99.9 |

PC BREADBOARD-ON-A-CARD


SOLDER STATION
UL APPROVED
ADJUSTABLE HEAT SETTING - TIP TEMPERATURE READOU REPLACEMENT TIPS @ $\$ 2.95$ 168-3C
$\$ 59.95$

| SOLDERTAIL |  | WIREWRAP |  | ZIF SOCKETS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 PIN ST | . 11 | 8 PIN WW | . 59 | ZIF-14 | 5.95 |
| 14 PIN ST | . 11 | 14 PIN WW | . 69 | ZIF-16 | 5.95 |
| 16 PIN ST | . 12 | 16 PIN WW | . 69 | ZIF-20 | 6.95 |
| 18 PIN ST | . 15 | 18 PIN WW | . 99 | ZIF-24 | 7.95 |
| 20 PIN ST | . 18 | 20 PIN WW | 1.09 | ZIF-28 | 7.95 |
| 24 PIN ST | . 20 | 24 PIN WW | 1.49 | ZIF-40 | 10.95 |
| 28 PIN ST | . 22 | 28 PIN WW | 1.69 |  |  |
| 40 PIN ST | . 30 | 40 PIN WW | 1.99 | DIS | s |
| SOLDER-CUP D-SUBS |  |  |  |  |  |
| MALE |  | FEMALE |  | IDE20 | . 55 |
| DB09P | . 45 | DB09S | . 49 | IDE34 | . 89 |
| DB15P | . 59 | DB15S | . 69 | IDS34 | . 75 |
| HDB15P | 1.49 | HDB15S | 1.59 | iDB09P | 1.39 |
| DB19P | . 69 | DB19S | . 75 | IDB09S | 1.45 |
| DB25P | . 69 | D825S | . 75 | IDB25P | 2.25 |
| DB37P | 1.35 | DB37S | 1.39 2 | IDB25S | 2.35 |
| DB50P | 1.85 | DB50S |  |  |  |

## CABLES AND GENDER CHANGERS

MOLDED; GOLD-PLATED CONTACTS; 100\% SHIELDED CBL-PRINTER 6 FT, PC PRINTER CABLE $\begin{array}{ll}\text { CBL-PRNTR-25 } & 25 \text { FT. PC PRINTER CABLE } \\ \text { CBL-PRINTR-RA } & \text { RIGHT ANGLE PRINTER CABLE }\end{array}$ CBL-DB25-MM DB25 MALE-DB25 MALE 6 FT, $\begin{array}{ll}\text { CBL-DB25-MF } & \text { DB25 MALE-DB25 FEMALE } 6 \text { FT } \\ \text { CBL-9-SERIAL }\end{array}$ $\begin{array}{ll}\text { CBL-9-SERIAL } \\ \text { CBL-KBD-EXT } & \text { DB9 FEMALE-DB25 MALE } 6 \text { FT, } \\ \text { FT KEYBOARD EXTENSION }\end{array}$ $\begin{array}{ll}\text { CBL-KBD-EXT } & 5 \text { FT. KEYBOARD EXTENSIO } \\ \text { CBL-CNT-MM } & 36-\text { PIN CENTRONICS -MM }\end{array}$ CBL-FDC-EXT 37-PIN EXT. FLOPPY CABLE $\begin{array}{ll}\text { CBL-FDC-EXT } & \text { 37-PIN EXT. FLOPPY CABLE } \\ \text { CBL-MNT-9 } & \text {-PIN MONITOR EXTENSION }\end{array}$ CBL-MNT-15 15-PIN MONITOR EXTENSION CABLE CBL-MODEM MODEM-DB25-DB25 FEMALE GENDER-VGA DB9-DB15 ADAPTOR DB9-DB25 SERIAL ADAPTOR
9.95
15.95
15.95
9.95
9.95
6.95
7.95
14.95
9.95
6.95
9.95
6.95
4.95
4.95

## PARTIAL LISTINGS ONLY-GALL FOR FREE 84-PG CATALOGI



## VALUE-PRICED TEST EQUIPMENT

 ALL WITH A 2 YEAR WARRANTY!

35 MHZ DUAL TRACE
OSCILLOSCOPE
s $499^{95}$

- WIDE BAND WIDTH • VARIABLE HOLDOFF

MODEL-3500 (SHOWN)
20 MHZ DUAL TRACE OSCILLOSCOPE ${ }^{5} 389.95$

- TV SYNC FILTER - COMPONENTS TESTER MODEL 2000
the ultimate
3.5 DIGIT DMM
s7995
BASIC DC ACCURACY $\pm 0.25 \%$
34 RANGES
- TEMP, TRANSISTOR \& RESISTANCE FEATURES
DMM-300 (SHOWN)
3.5 DIGIT

FULL FUNCTION DMM $\$ 49.95$

- BASIC DC ACCURACY $\pm 0.25 \%$
- 22 RANGES

DMM-200 $\$ 49.95$
3.5 DIGIT POCKET SIZE DMM ${ }^{\mathbf{s}} \mathbf{2 9 . 9 5}$

- BASIC DC ACCURACY $\pm 0.5 \% \cdot 14$ RANGES

DMM-100
3.5 DIGIT PROBE TYPE DMM $\$ 5495$

- AUTORANGING
- RESISTANCE:2K.2M

RESISTANCE: 2K-2M


HIGH/LOW LOGIC PROBE ${ }^{\text {s }} 17.95$

- DETECTS TTUCMOS LOGIC STATES
- MEMORY FUNCTION FREEZES DATA FOR LATER USE

LP-2800
PULSER PROBE FOR QUICK DEBUGGING ${ }^{\text {s }} 19.95$

- INJECTS PULSE INTO TEST CIRCUIT-VARIABLE WIDTH
- TTL, DTL, TRL, HTL, HINIL, MOS, \& CMOS COMPATIBLE
- TTL, DTL, TRL, HTL, HINLL, MOS, \& CMOS COMPATIBLE

LP-540


JIM'S BARGAIN HUNTERS CORNER
Jim Wharton JDR's VP Sales
DFI SERIA
MOUSE AND


HALO-DPE SOFTWARE
REGULARLY $\$ 59.95$

- THREE-BUTTON OPTO-MECHANICAL MOUSE
- 200 DPI RESOLUTION
- USES SERIAL PORT COM1 OR COM 2
- COMPATBLE WITH MICROSOFT MOUSE AND PC

MOUSE

- INCLUDES SOFTWARE MOUSE DRIVERS
- 5-1/2 FT. CABLE WITH FEMALE DB25 CONNECTOR - INCLUDES HALO-DPE SOFTWARE, A SOPHISTICATED INCLUDES HALO-DPE SOFTWARE, A SOPHISTICATED
DESKTOP PUBLISHING EDITOR DESKTOP PUBLISHING EDITOR IMAGE EDITOR UTILTTY PERMITS $90^{\circ}$ ROTATION AND PAINTBRUSH FORMATS
DONT MISS THIS GREAT VALUEI
DMS-200 EXPIRES 10/31/89

ORDER TOLL-FREE 800-538-5000
LOCAL (408) 559-1200 FAX (408) 559-0250 TELEX 171-110
CIRCLE 113 ON FREE INFORMATION CARD

ADVERTISING INDEX
RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.


## Gernsback Publications, Inc.

500-B Bi-County Blud.
Farmingdale, NY 11735
1-516-293-3000
Fax 1-516-293-3115
President: Larry Steckler
Vice President: Cathy Steckler
For Advertising ONLY
1-516-293-3000
Fax 1-516-293-3115
Larry Steckler publisher
Arline Fishman
advertising director
Christina Estrada
advertising assistant
Lisa Strassman
credit manager
SALES OFFICES
EAST/SOUTHEAST
Stanley Levitan
Eastern Sales Manager
Radio-Electronics
259-23 57th Avenue
Little Neck, NY 11362
1-718-428-6037, 1-516-293-3000
MIDWEST/Texas/
Arkansas/ Okla.
Ralph Bergen
Midwest Sales Manager
Radio-Electronics
540 Frontage Road-Suite 339
Northfield, IL 60093
1-312-446-1444
Fax 1-312-446-8451
PACIFIC COAST/
Mountain States
Marvin Green
Pacific Sales Manager
Radio-Electronics
5430 Van Nuys Blvd. Suite 316
Van Nuys, CA 91401
1-818-986-2001
Fax 1-818-986-2009


## The PA81 Is Truly The "Missing Link In Audio Servicing"

Introducing the "Missing Link In Audio Servicing," with the NEW PA81 Stereo Power Amplifier Analyzer ${ }^{\text {TM }}$ from Sencore Electronics. The PA81 provides everything you need for power amplifier analyzing integrated into one complete package, with:

- Twin Frequency Compensated Autoranged Wattmeters: 250 watts per channel ( 500 watts if paralleled), and listen to audio clarity with built-in volume control.
- Built-in IHF/EIA Testing Components At Your Fingertips: 2,4,8,16, and 32 ohm-zero
reactance loads, and all specified bandpass audio filters.
- Measure RMS Volts And dB As You Trace Through Circuits: Plus, programmable dB to measure stage gain.
- Test Intermittents To Prevent Amplifier Damage: Built-in DC balance test, automatically opens loads.
- Test Audio Line Levels To Make Sure The Driver Input Signal Is Correct: Check turntables, AM tuners, FM tuners, TV stereo demodulator outputs, CD players, etc. for standard line levels.
- Monitor Stereo Separation To 126 dB : Monitor, troubleshoot, or align AM-FM or TV Stereo separation circuits.


Walk troubles out of any power amplifier stage, step by step, with the PA81.


## Ask About <br> A 10 Day

Video Preview

# TROUBLESHOOTERS! 

| PRECISION HAND-HELD INSTRUMENTS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| DUAL TRACE OSCILLOSCOPES |  |  |  |  |  |
| A.W. SPERRY 20 MHz OSCILLOSCOPE <br> - Built-in component checke - Z-axis input • Low powe filter • High-sensitivity X-Y mode - Front panel trace rotator <br> Model 620C |  |  | HITACHI 35 MHz OSCILLOSCOPE <br> - 19 calibrated sweeps • $6^{\prime \prime}$ CRT with internal graticule, scale illumination \& photographic bezel - Auto focus - X.Y operation - TV sinc probes (101 and 11) <br> Model V-355 <br> Reg. $\$ 899.95$ |  |  |
| TRAINERS AND TOOLS |  |  |  |  |  |
|  |  |  |  |  |  |

[^6]
[^0]:    As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

    Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents, RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

    RADIO-ELECTRONICS, (ISSN 0033-7862) October 1989. Published monthly by Gernsback Publications, Inc., 500-B Bi-County Boulevard, Farmingdale, NY 11735 Second-Class Postage paid at Farmingdale, NY and additional mailing offices. Second-Class mail registration No. 9242 authorized at Toronto, Canada. One-year subscription rate U.S.A. and possessions $\$ 17.97$, Canada \$23.97, all other countries $\$ 26.97$. All subscription orders payable in U.S.A. funds only, via international postal money order or
    check drawn on a U.S.A. bank. Single copies $\$ 2.25$. © 1989 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A. check drawn on a U.S.A. bank. Single copies $\$ 2.25$. © 1989 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.
    POSTMASTER: Please send address changes to RADIO-ELECTRONICS, Subscription Dept., Box 55115, Boulder, CO 80321-5115.

[^1]:    Copyright © Teitronix Inc. 1989 *Ptices subject to change and valid in U.S. only Educational discounts arailable on request

[^2]:    NeN ${ }^{-1}$ TENTEL ${ }^{\text {© }}$ Corporation 4475 Golden Foothills Pkwy El Dorado Hills, CA 95630
    (800) 538-6894 / (916) 939-4005

[^3]:    *Brian Phelps is a technical writer for Sencore Electronics.

[^4]:    ITEMS DISCUSSED

    - Insults2 (\$5), Pranks (\$20),

    Modern Advisory Institute, P.O.
    Box 11632. Salt Lake City, UT 84147. (801) 569-0730.

    CIRCLE 48 ON FREE INFORMATION CARD

    - All ChargeCard (\$399), Adapter kit (\$100). All Computers Inc., 1220 Yonge Street, Second Floor, Toronto, Ontario, Canada M4T 1W1. (416) 960-0111.
    CIRCLE 47 ON FREE INFORMATION CARD

[^5]:    STEPPER motor drive \& control with Commodore 64. Affordable hardware, interface, \& software. Send for detailed literature \& prices to: MASE, R.D. \#2 Box 166, Mohrsville, PA 19541.
    FEB 87 Triparts $\$ 59.00$. Feb 84 SB parts $\$ 49.00$. $\$ 3.50$ shipping. OCTE, Box 276, Alburg, VT 05440. (514) 739-9328.

    RENTAL movie stabilizer. Connect between VCRs or to monitor. Satisfaction guaranteed. $\$ 69.95$, $\$ 4.00$ handling. 1 (800) 367-7909.

[^6]:    

    260 Motor Parkway Hauppauge, New York 11.788
    (In NY State 800-832-1446)
    Service \& Shipping Charge Schedule FOR ORDERS Continental U.S.A. FOR ORDE
    $\$ 8550$
    $\$ 551.100$
    $\$ 25.50$.
    $\$ 517100$
    
    
    VISA Mant AMERICW Money orders, checks accepted $\square$ (nant) Dapiss C.O.D.'s require $25 \%$ deposit.

